Skip to main content

Ultra-Precise Mass Measurements Using the UW-PTMS

  • Conference paper
Atomic Physics at Accelerators: Mass Spectrometry

Abstract

Based on the use of a single ion, isolated at the center of a cryogenically cooled Penning trap, an environment is produced which makes this mass spectrometer remarkably free of systematic errors. The most notable developments in our quest for an ultra-high accuracy instrument were (a) the compensation of the trapping potential, (b) the discovery that motional sidebands could manipulate radial energies, (c) the use of multiply-charged ions that could improve signal-to-noise, and (d) the use of an ultra-stable superconducting magnet/cryostat system with drift <0.010 ppb/h. The dominant systematic errors are associated with radial electric fields caused by image charges in the trap electrodes and with the rf-electrical drive field used to determine the harmonic axial resonance. To illustrate the potential of this improved spectrometer, the four-fold improved measurement of the proton’s mass and the eight-fold improved measurement of oxygen’s atomic mass will be described.

This research is supported by a grant from the National Science Foundation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Brown, L. and Gabrielse, G., Rapid Communications of Phys. Rev. A 25 (1982), 2423–2425.

    Google Scholar 

  2. Moore, F. L., Brown, L. S., Farnham, D. L., Jeon, S., Schwinberg, P. B. and Van Dyck, Jr., R. S., Phys. Rev. A 46 (1992), 2653–2667.

    Article  ADS  Google Scholar 

  3. Van Dyck, Jr., R. S., Farnham, D. L. and Schwinberg, P. B., In: Physica Scripta T59, Proceedings of Nobel Symposium on ‘Particle Traps and Related Fundamental Physics’, Lysekil, Sweden (1995), 134–143.

    Google Scholar 

  4. Van Dyck, Jr., R. S., In: R. Hulet and B. Dunning (eds), Atomic, Molecular, and Optical Physics: Charged Particles, Experimental Methods in the Physical Sciences 29A, Academic Press, New York, 1995, pp. 363–389.

    Chapter  Google Scholar 

  5. Gabrielse, G., Phys. Rev. A 27 (1983), 2277–2290.

    Article  ADS  Google Scholar 

  6. Brown, L. S. and Gabrielse, G., Rev. Mod. Phys. 58 (1986), 233–311.

    Article  ADS  Google Scholar 

  7. Farnham, D. L., A determination of the proton/electron mass ratio and the electron’s atomic mass via Penning trap mass spectroscopy, Ph.D. Thesis, University of Washington, Seattle, 1995.

    Google Scholar 

  8. Van Dyck, Jr., R. S., Wineland, D. J., Ekstrom, P. A. and Dehmelt, H. G., Appl. Phys. Letters 28 (1976), 446–448.

    Article  ADS  Google Scholar 

  9. Van Dyck, Jr., R. S., Schwinberg, P. B. and Dehmelt, H. G., In: New Frontiers in High Energy Physics, Plenum, NY, 1978, pp. 159–181.

    Book  Google Scholar 

  10. Cornell, E. A., Weisskoff, R. M., Boyce, K. R. and Pritchard, D. E., Phys. Rev. A 41 (1990), 312–315.

    Article  ADS  Google Scholar 

  11. Salinger, G. L. and Wheatley, J. C., Rev. Sci. Instrum. 32 (1961), 872–874;

    Article  ADS  Google Scholar 

  12. Lockart, J. M., Fagaly, R. L., Lombardo, L. W. and Muhlfelder, B., Physica B 165 & 166 (1990), 147–148.

    Google Scholar 

  13. Gabrielse, G. and Tan, J., J. Appl. Phys. 63 (1988), 5143–5148.

    Article  ADS  Google Scholar 

  14. Van Dyck, Jr., R. S., Farnham, D. L., Zafonte, S. L. and Schwinberg, P. B., In: Trapped Charged Particles and Fundamental Physics, AIP Conference Proceedings 457, 1999, pp. 101–110.

    Google Scholar 

  15. Van Dyck, Jr., R. S., Farnham, D. L., Zafonte, S. L. and Schwinberg, P. B., Rev. Sci. Instrum. 70(1999), 1665–1671.

    Article  ADS  Google Scholar 

  16. DiFilippo, F., Natarajan, V, Bradley, M., Palmer, F. and Pritchard, D. E., Physica Scripta T59 (1995), 144–154.

    Article  ADS  Google Scholar 

  17. Carlberg, C., Hyp. Interact. 114 (1998), 177–195.

    Article  ADS  Google Scholar 

  18. Van Dyck, Jr., R. S., Moore, F. L., Farnham, D. L. and Schwinberg, P. B., Phys. Rev. A 40 (1989), 6308–6313.

    Article  ADS  Google Scholar 

  19. Audi, G. and Wapstra, A. H., Nuc. Phys. A 565 (1993), 1–65;

    Article  ADS  Google Scholar 

  20. Audi, G. and Wapstra, A. H., Nuc. Phys. A 595 (1995), 409–522.

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Kluwer Academic Publishers

About this paper

Cite this paper

Van Dyck, R.S., Zafonte, S.L., Schwinberg, P.B. (2001). Ultra-Precise Mass Measurements Using the UW-PTMS. In: Lunney, D., Audi, G., Kluge, HJ. (eds) Atomic Physics at Accelerators: Mass Spectrometry. Springer, Dordrecht. https://doi.org/10.1007/978-94-015-1270-1_12

Download citation

  • DOI: https://doi.org/10.1007/978-94-015-1270-1_12

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-5825-6

  • Online ISBN: 978-94-015-1270-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics