Advertisement

MR Physics and Imaging of Phase Contrast MRI

  • Michael Markl
  • Britta Schneider
  • Jürgen Hennig
Chapter
  • 167 Downloads
Part of the Computational Imaging and Vision book series (CIVI, volume 23)

Abstract

In recent years cardiac magnetic resonance (MR) imaging has become an important method for diagnosis of heart disease not only for morphologic evaluation but also for the characterization of myocardial function. Noninvasive measurement of myocardial wall motion with MRI is a promising method for detection of the mechanical performance of the heart in order to identify abnormal motion and potentially infarcted areas of the left ventricle. Several methods for ventricular motion mapping have already been proposed. An extensive discussion of the various approaches is found in Ref.[l].

Keywords

Magn Reson Image Magnetic Resonance Signal Cardiac Phase Myocardial Motion Phase Contrast Technique 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    E. R. McVeigh. MRI of myocardial function: motion tracking techniques. Magn Reson Imaging, vol. 14, pp. 137–50, 1996.PubMedCrossRefGoogle Scholar
  2. [2]
    A. A. Amini, Y. Chen, R. W. Curwen, V. Mani, and J. Sun. Coupled B-snake grids and constrained thin-plate splines for analysis of 2-D tissue deformations from tagged MRI. IEEE Trans Med Imaging, vol. 17, pp. 344–56, 1998.PubMedCrossRefGoogle Scholar
  3. [3]
    L. Axel, R. C. Goncalves, and D. Bloomgarden. Regional heart wall motion: two-dimensional analysis and functional imaging with MR imaging. Radiology, vol. 183, pp. 745–50, 1992.PubMedGoogle Scholar
  4. [4]
    H. Azhari, J. L. Weiss, and E. P. Shapiro. Distribution of myocardial strains: an MRI study. Adv Exp Med Biol, vol. 382, pp. 319–28, 1995.PubMedCrossRefGoogle Scholar
  5. [5]
    A. Bazille, M. A. Guttman, E. R. McVeigh, and E. A. Zerhouni. Impact of semiautomated versus manual image segmentation errors on myocardial strain calculation by magnetic resonance tagging. Invest Radiol, vol. 29, pp. 427–33, 1994.PubMedCrossRefGoogle Scholar
  6. [6]
    P. Croisille, M. A. Guttman, E. Atalar, E. R. McVeigh, and E. A. Zerhouni. Precision of myocardial contour estimation from tagged MR images with a black-blood technique. Acad Radiol, vol. 5, pp. 93–100, 1998. Acad Radiol, vol. 5, pp. 93–100, 1998.PubMedCrossRefGoogle Scholar
  7. [7]
    Z. A. Fayad, V. A. Ferrari, D. L. Kraitchman, A. A. Young, H. I. Palevsky, D. C. Bloomgarden, and L. Axel. Right ventricular regional function using MR tagging: normals versus chronic pulmonary hypertension. Magn Reson Med, vol. 39, pp. 116–23, 1998.PubMedCrossRefGoogle Scholar
  8. [8]
    S. E. Fischer, G. C. McKinnon, M. B. Scheidegger, W. Prins, D. Meier, and P. Boesiger. True myocardial motion tracking. Magn Reson Med, vol. 31, pp. 401–13, 1994.PubMedCrossRefGoogle Scholar
  9. [8a]
    S. E. Fischer, G. C. McKinnon, M. B. Scheidegger, W. Prins, D. Meier, and P. Boesiger. True myocardial motion tracking. Magn Reson Med, vol. 31, pp. 401–13, 1994.PubMedCrossRefGoogle Scholar
  10. [9]
    M. A. Fogel, K. B. Gupta, P. M. Weinberg, and E. A. Hoffman. Regional wall motion and strain analysis across stages of Fontan reconstruction by magnetic resonance tagging. Am J Physiol, vol 269, pp. H1132–52, 1995.PubMedGoogle Scholar
  11. [9a]
    M. A. Fogel, K. B. Gupta, P. M. Weinberg, and E. A. Hoffman. Regional wall motion and strain analysis across stages of Fontan reconstruction by magnetic resonance tagging. Am J Physiol,vol. 269, pp. H1132–52, 1995.PubMedGoogle Scholar
  12. [10]
    F. D. Knollmann, J. Maurer, W. Wlodarczyk, J. C. Bock, and R. Felix. Fourier phase mapping of the human heart. The use of spatial modulation of magnetization cine magnetic resonance imaging. Invest Radiol, vol. 31, pp. 743–8, 1996.PubMedCrossRefGoogle Scholar
  13. [11]
    C. M. Kramer, W. J. Rogers, T. M. Theobald, T. P. Power, S. Petruolo, and N. Reichek. Remote noninfarcted region dysfunction soon after first anterior myocardial infarction. A magnetic resonance tagging study. Circulation, vol. 94, pp. 660–6, 1996.PubMedGoogle Scholar
  14. [12]
    C. M. Kramer, W. J. Rogers, G. Geskin, T. P. Power, T. M. Theobald, Y. L. Hu, and N. Reichek. Usefulness of magnetic resonance imaging early after acute myocardial infarction. Am J Cardiol, vol. 80, pp. 690–5, 1997.PubMedCrossRefGoogle Scholar
  15. [13]
    J. P. Kuijer, J. T. Marcus, M. J. Gotte, A. C. van Rossum, and R. M. Heethaar. Simultaneous MRI tagging and through-plane velocity quantification: a three-dimensional myocardial motion tracking algorithm. J Magn Reson Imaging, vol. 9, pp. 409–19, 1999.PubMedCrossRefGoogle Scholar
  16. [14]
    J. A. Lima, V. A. Ferrari, N. Reichek, C. M. Kramer, L. Palmon, M. R. Llaneras, B. Tallant, A. A. Young, and L. Axel. Segmental motion and deformation of transmurally infarcted myocardium in acute postinfarct period. Am J Physiol, vol. 268, pp. H1304–12, 1995.PubMedGoogle Scholar
  17. [15]
    G. A. MacGowan, D. Burkhoff, W. J. Rogers, D. Salvador, H. Azhari, P. S. Hees, J. L. Zweier, H. R. Halperin, C. O. Siu, J. A. Lima, J. L. Weiss, and E. P. Shapiro. Effects of afterload on regional left ventricular torsion. Cardiovasc Res, vol. 31, pp. 917–25, 1996.PubMedGoogle Scholar
  18. [16]
    S. E. Maier, S. E. Fischer, G. C. McKinnon, O. M. Hess, H. P. Krayenbuehl, and P. Boesiger. Acquisition and evaluation of tagged magnetic resonance images of the human left ventricle. Comput Med Imaging Graph, vol. 16, pp. 73–80, 1992.PubMedCrossRefGoogle Scholar
  19. [17]
    S. E. Maier, S. E. Fischer, G. C. McKinnon, O. M. Hess, H. P. Krayenbuehl, and P. Boesiger. Evaluation of left ventricular segmental wall motion in hypertrophic cardiomyopathy with myocardial tagging. Circulation, vol. 86, pp. 1919–28, 1992.PubMedGoogle Scholar
  20. [18]
    J. T. Marcus, M. J. Gotte, A. C. Van Rossum, J. P. Kuijer, R. M. Heethaar, L. Axel, and C. A. Visser. Myocardial function in infarcted and remote regions early after infarction in man: assessment by magnetic resonance tagging and strain analysis. Magn Reson Med, vol. 38, pp. 803–10, 1997.PubMedCrossRefGoogle Scholar
  21. [19]
    C. Matter, E. Nagel, M. Stuber, P. Boesiger, and O. M. Hess. Assessment of systolic and diastolic LV function by MR myocardial tagging. Basic Res Cardiol, vol. 91, pp. 23–8, 1996.PubMedCrossRefGoogle Scholar
  22. [20]
    G. C. McKinnon, S. E. Fischer, and S. E. Maier. Non invasive measurement of myocardial motion using magnetic resonance tagging. Australas Phys Eng Sci Med, vol. 14, pp. 189–96, 1991.PubMedGoogle Scholar
  23. [21]
    E. R. McVeigh and E. A. Zerhouni. Noninvasive measurement of transmural gradients in myocardial strain with MR imaging. Radiology, vol. 180, pp. 677–83, 1991.PubMedGoogle Scholar
  24. [22]
    E. R. McVeigh and E. Atalar. Cardiac tagging with breath-hold cine MRI. Magn Reson Med, vol. 28, pp. 318–27, 1992.PubMedCrossRefGoogle Scholar
  25. [23]
    T. J. Mosher and M. B. Smith. A DANTE tagging sequence for the evaluation of translational sample motion. Magn Reson Med, vol. 15, pp. 334–9, 1990.PubMedCrossRefGoogle Scholar
  26. [24]
    J. Park, D. Metaxas, and L. Axel. Analysis of left ventricular wall motion based on volumetric deformable models and MRI-SPAMM. Med Image Anal, vol. 1, pp. 53–71, 1996.PubMedCrossRefGoogle Scholar
  27. [25]
    T. P. Power, C. M. Kramer, A. L. Shaffer, T. M. Theobald, S. Petruolo, N. Reichek, and W. J. Rogers, Jr. Breathhold dobutamine magnetic resonance myocardial tagging: normal left ventricular response. Am J Cardiol, vol. 80, pp. 1203–7, 1997.PubMedCrossRefGoogle Scholar
  28. [26]
    F. E. Rademakers, W. J. Rogers, W. H. Guier, G. M. Hutchins, C. O. Siu, M. L. Weisfeldt, J. L. Weiss, and E. P. Shapiro. Relation of regional cross-fiber shortening to wall thickening in the intact heart. Three-dimensional strain analysis by NMR tagging. Circulation, vol. 89, pp. 1174–82, 1994.PubMedGoogle Scholar
  29. [27]
    F. E. Rademakers and J. Bogaert. Left ventricular myocardial tagging. Int J Card Imaging, vol. 13, pp. 233–45, 1997.PubMedCrossRefGoogle Scholar
  30. [28]
    N. Reichek. MRI myocardial tagging. J Magn Reson Imaging, vol. 10, pp. 609–16, 1999.PubMedCrossRefGoogle Scholar
  31. [29]
    M. Stuber, S. E. Fischer, M. B. Scheidegger, and P. Boesiger. Toward high-resolution myocardial tagging. Magn Reson Med, vol. 41, pp. 639–43, 1999.PubMedCrossRefGoogle Scholar
  32. [30]
    M. Stuber, M. A. Spiegel, S. E. Fischer, M. B. Scheidegger, P. G. Danias, E. M. Pedersen, and P. Boesiger. Single breath-hold slice-following CSPAMM myocardial tagging. Magma, vol. 9, pp. 85–91, 1999.PubMedCrossRefGoogle Scholar
  33. [31]
    A. A. Young, L. Axel, L. Dougherty, D. K. Bogen, and C. S. Parenteau. Validation of tagging with MR imaging to estimate material deformation. Radiology, vol. 188, pp. 101–8, 1993.PubMedGoogle Scholar
  34. [32]
    A. A. Young, C. M. Kramer, V. A. Ferrari, L. Axel, and N. Reichek. Three-dimensional left ventricular deformation in hypertrophic cardiomyopathy. Circulation, vol. 90, pp. 854–67, 1994.PubMedGoogle Scholar
  35. [33]
    A. A. Young, H. Imai, C. N. Chang, and L. Axel. Two-dimensional left ventricular deformation during systole using magnetic resonance imaging with spatial modulation of magnetization [published erratum appears in Circulation 1994 Sep;90(3):1584]. Circulation, vol. 89, pp. 740–52, 1994.PubMedGoogle Scholar
  36. [34]
    A. A. Young, Z. A. Fayad, and L. Axel. Right ventricular midwall surface motion and deformation using magnetic resonance tagging. Am J Physiol, vol. 271, pp. H2677–88, 1996.PubMedGoogle Scholar
  37. [35]
    E. A. Zerhouni, D. M. Parish, W. J. Rogers, A. Yang, and E. P. Shapiro. Human heart: tagging with MR imaging-a method for noninvasive assessment of myocardial motion. Radiology, vol. 169, pp. 59–63, 1988.PubMedGoogle Scholar
  38. [36]
    L. Axel and L. Dougherty. MR imaging of motion with spatial modulation of magnetization. Radiology, vol. 171, pp. 841–5, 1989.PubMedGoogle Scholar
  39. [37]
    L. Axel and L. Dougherty. Heart wall motion: improved method of spatial modulation of magnetization for MR imaging. Radiology, vol. 172, pp. 349–50, 1989.PubMedGoogle Scholar
  40. [38]
    J. Hennig. Generalized MR interferography. Magn Reson Med, vol. 16, pp. 390–402, 1990.PubMedCrossRefGoogle Scholar
  41. [39]
    R. T. Constable, K. M. Rath, A. J. Sinusas, and J. C. Gore. Development and evaluation of tracking algorithms for cardiac wall motion analysis using phase velocity MR imaging. Magn Reson Med, vol. 32, pp. 33–42, 1994.PubMedCrossRefGoogle Scholar
  42. [40]
    N. J. Pelc, R. J. Herfkens, A. Shimakawa, and D. R. Enzmann. Phase contrast cine magnetic resonance imaging. Magn Reson Q, vol. 7, pp. 229–54, 1991.PubMedGoogle Scholar
  43. [41]
    L. R. Pelc, J. Sayre, K. Yun, L. J. Castro, R. J. Herfkens, D. C. Miller, and N. J. Pelc. Evaluation of myocardial motion tracking with cine-phase contrast magnetic resonance imaging. Invest Radiol, vol. 29, pp. 1038–42, 1994.PubMedCrossRefGoogle Scholar
  44. [42]
    Y. Zhu and N. J. Pelc. Three-dimensional motion tracking with volumetric phase contrast MR velocity imaging. J Magn Reson Imaging, vol. 9, pp. 111–8, 1999.PubMedCrossRefGoogle Scholar
  45. [43]
    Y. Zhu, M. Drangova, and N. J. Pelc. Estimation of deformation gradient and strain from cine-PC velocity data. IEEE Trans Med Imaging, vol. 16, pp. 840–51, 1997.PubMedCrossRefGoogle Scholar
  46. [44]
    Y. Zhu, M. Drangova, and N. J. Pelc. Fourier tracking of myocardial motion using cine-PC data. Magn Reson Med, vol. 35, pp. 471–80, 1996.PubMedCrossRefGoogle Scholar
  47. [45]
    L. Wigstrom, T. Ebbers, A. Fyrenius, M. Karlsson, J. Engvall, B. Wranne, and A. F. Bolger. Particle trace visualization of intracardiac flow using time-resolved 3D phase contrast MRI. Magn Reson Med, vol. 41, pp. 793–9, 1999.PubMedCrossRefGoogle Scholar
  48. [46]
    M. Drangova, Y. Zhu, B. Bowman, and N. J. Pelc. In vitro verification of myocardial motion tracking from phase-contrast velocity data. Magn Reson Imaging, vol. 16, pp. 863–70, 1998.PubMedCrossRefGoogle Scholar
  49. [47]
    M. Drangova, Y. Zhu, and N. J. Pelc. Effect of artifacts due to flowing blood on the reproducibility of phase-contrast measurements of myocardial motion. J Magn Reson Imaging, vol. 7, pp. 664–8, 1997.PubMedCrossRefGoogle Scholar
  50. [48]
    N. J. Pelc, M. Drangova, L. R. Pelc, Y Zhu, D. C. Noll, B. S. Bowman, and R. J. Herfkens. Tracking of cyclic motion with phase-contrast cine MR velocity data. J Magn Reson Imaging, vol. 5, pp. 339–45, 1995.PubMedCrossRefGoogle Scholar
  51. [49]
    A. E. Arai, C. C. Gaither3rd, F. H. Epstein, R. S. Balaban, and S. D. Wolff. Myocardial velocity gradient imaging by phase contrast MRI with application to regional function in myocardial ischemia. Magn Reson Med, vol. 42, pp. 98–109, 1999.PubMedCrossRefGoogle Scholar
  52. [50]
    J. Hennig, M. Markl, B. Schneider, and S. Peschl. Regional myocardial function with tissue phase mapping. Magma, vol. 6, pp. 145–6, 1998.PubMedCrossRefGoogle Scholar
  53. [51]
    J. Hennig, B. Schneider, S. Peschl, M. Markl, T. Krause, and J. Laubenberger. Analysis of myocardial motion based on velocity measurements with a black blood prepared segmented gradient-echo sequence: methodology and applications to normal volunteers and patients. J Magn Reson Imaging, vol. 8, pp. 868–77, 1998.PubMedCrossRefGoogle Scholar
  54. [52]
    M. Markl, B. Schneider, J. Hennig, S. Peschl, J. Winterer, T. Krause, and J. Laubenberger. Cardiac phase contrast gradient echo MRI: measurement of myocardial wall motion in healthy volunteers and patients. Int J Card Imaging, vol. 15, pp. 441–52, 1999.PubMedCrossRefGoogle Scholar
  55. [53]
    M. Markl and J. Hennig. Fast Velocity Mapping of Myocardial Motion with k-Space Segmented Black Blood Echo Planar and Gradient Echo Imaging. presented at 7th Scientific Meeting International Society of Magnetic Resonance in Medicine, Philadelphia, USA, 1999.Google Scholar
  56. [54]
    R. Van der Geest, L. Kroft, H. Kayser, E. van der Wall, A. de Roos, and J. Reiber. Detection of regions of myocardial infarction in pigs. Higher sensitivity and specificity using 3D velocity-encoded cine MR imaging compared to wall thickening. presented at 7th Ann. Meeting ISMRM, Philadelphia, 1999.Google Scholar
  57. [55]
    R. Van der Geest, H. Kayser, E. van der Wall, J. Reiber, and A. de Roos. Measurement of regional and transmural variation in left ventricular myocardial motion in normal volunteers using 3D velocity encoded cine MRI. presented at 6th Ann.Meeting ISMRM, Sidney, 1998.Google Scholar
  58. [56]
    H. Kayser, R. van der Geest, E. van der Wall, J. Reiber, and A. de Roos. Assessment of right ventricular wall motion using 3D phase contrast MR velocity mapping. presented at 6th Ann.Meeting ISMRM, Sidney, 1998.Google Scholar
  59. [57]
    H. Kawamitsu, K. Sugimura, and K. Ochiai. Myocardial wall motion analysis with phase shift imaging: cine phase contrast technique. Nippon Rinsho, vol. 55, pp. 1794–9, 1997.PubMedGoogle Scholar
  60. [58]
    B. Schneider, M. Markl, C. Geiges, J. Winterer, J. Hennig, and M. Langer. Left Ventricular Phase Contrast Velocity Mapping in 34 Patients with Ischaemic Heart Disease. presented at 8th Scientific Meeting International Society of Magnetic Resonance in Medicine, Denver, USA, 2000.Google Scholar
  61. [59]
    C. L. Dumoulin. Phase contrast MR angiography techniques. Magn Reson Imaging Clin N Am, vol. 3, pp. 399–411, 1995.PubMedGoogle Scholar
  62. [60]
    M. F. Walker, S. P. Souza, and C. L. Dumoulin. Quantitative flow measurement in phase contrast MR angiography. J Comput Assist Tomogr, vol. 12, pp. 304–13, 1988.PubMedCrossRefGoogle Scholar
  63. [61]
    D. N. Firmin, G. L. Nayler, R. H. Klipstein, S. R. Underwood, R. S. Rees, and D. B. Longmore. In vivo validation of MR velocity imaging. J Comput Assist Tomogr, vol. 11, pp. 751–6, 1987.PubMedCrossRefGoogle Scholar
  64. [62]
    D. N. Firmin, G. L. Nayler, P. J. Kilner, and D. B. Longmore, The application of phase shifts in NMR for flow measurement. Magn Reson Med, vol. 14, pp. 230–41, 1990.PubMedCrossRefGoogle Scholar
  65. [63]
    V. S. Lee, C. E. Spritzer, B. A. Carroll, L. G. Pool, M. A. Bernstein, S. K. Heinle, and J. R. MacFall. Flow quantification using fast cine phase-contrast MR imaging, conventional cine phase-contrast MR imaging, and Doppler sonography: in vitro and in vivo validation. AJR Am J Roentgenol, vol. 169, pp. 1125–31, 1997.PubMedGoogle Scholar
  66. [64]
    A. Lingamneni, P. A. Hardy, K. A. Powell, N. J. Pelc, and R. D. White. Validation of cine phase-contrast MR imaging for motion analysis. J Magn Reson Imaging, vol. 5, pp. 331–8, 1995.PubMedCrossRefGoogle Scholar
  67. [65]
    R. H. Mohiaddin and D. J. Pennell. MR blood flow measurement. Clinical application in the heart and circulation Cardiol Clin, vol. 16, pp. 161–87, 1998.Google Scholar
  68. [66]
    G. L. Nayler, D. N. Firmin, and D. B. Longmore. Blood flow imaging by cine magnetic resonance. J Comput Assist Tomogr, vol. 10, pp. 715–22, 1986.PubMedCrossRefGoogle Scholar
  69. [67]
    S. R. Underwood, D. N. Firmin, R. S. Rees, and D. B. Longmore. Magnetic resonance velocity mapping. Clin Phys Physiol Meas, vol. 11, pp. 37–43, 1990.PubMedCrossRefGoogle Scholar
  70. [68]
    C. Thomsen, M. Cortsen, L. Sondergaard, O. Henriksen, and F. Stahlberg. A segmented K-space velocity mapping protocol for quantification of renal artery blood flow during breath-holding. J Magn Reson Imaging, vol. 5, pp. 393–401, 1995.PubMedCrossRefGoogle Scholar
  71. [69]
    G. B. Pike, C. H. Meyer, T. J. Brosnan, and N. J. Pelc. Magnetic resonance velocity imaging using a fast spiral phase contrast sequence. Magn Reson Med, vol. 32, pp. 476–83, 1994.PubMedCrossRefGoogle Scholar
  72. [70]
    S. Kozerke, M. B. Scheidegger, E. M. Pedersen, and P. Boesiger. Heart motion adapted cine phase-contrast flow measurements through the aortic valve. Magn Reson Med, vol. 42, pp. 970–8, 1999.PubMedCrossRefGoogle Scholar
  73. [71]
    K. S. Nayak, J. M. Pauly, A. B. Kerr, B. S. Hu, and D. G. Nishimura. Realtime color flow MRI. Magn Reson Med, vol. 43, pp. 251–8, 2000.PubMedCrossRefGoogle Scholar
  74. [72]
    A. Huber, K. Nikolaou, P. Gonschior, A. Knez, M. Stehling, and M. Reiser. Navigator echo-based respiratory gating for three-dimensional MR coronary angiography: results from healthy volunteers and patients with proximal coronary artery stenosis. AJR Am J Roentgenol, vol. 173, pp. 95–101, 1999.PubMedGoogle Scholar
  75. [73]
    E. M. Haacke and J. L. Patrick. Reducing motion artifacts in two-dimensional Fourier transform imaging. Magn Reson Imaging, vol. 4, pp. 359–76, 1986.PubMedCrossRefGoogle Scholar
  76. [74]
    M. H. Cho, W. S. Kim, and Z. H. Cho. CSF flow artifact reduction using cardiac cycle ordered phase-encoding method. Magn Reson Imaging, vol. 8, pp. 395–405, 1990.PubMedCrossRefGoogle Scholar
  77. [75]
    R. L. Ehman and J. P. Felmlee. Adaptive technique for high-definition MR imaging of moving structures. Radiology, vol. 173, pp. 255–63, 1989.PubMedGoogle Scholar
  78. [76]
    H. W. Korin, J. P. Felmlee, R. L. Ehman, and S. J. Riederer. Adaptive technique for three-dimensional MR imaging of moving structures. Radiology, vol. 177, pp. 217–21, 1990.PubMedGoogle Scholar
  79. [77]
    J. P. Felmlee, R. L. Ehman, S. J. Riederer, and H. W. Korin. Adaptive motion compensation in MRI: accuracy of motion measurement. Magn Reson Med, vol. 18, pp. 207–13, 1991.PubMedCrossRefGoogle Scholar
  80. [78]
    Y. Wang, P. J. Rossman, R. C. Grimm, S. J. Riederer, and R. L. Ehman. Navigator-echo-based real-time respiratory gating and triggering for reduction of respiration effects in three-dimensional coronary MR angiography. Radiology, vol. 198, pp. 55–60, 1996.PubMedGoogle Scholar
  81. [79]
    A. M. Taylor, P. Jhooti, F. Wiesmann, J. Keegan, D. N. Firmin, and D. J. Pennell. MR navigator-echo monitoring of temporal changes in diaphragm position: implications for MR coronary angiography. J Magn Reson Imaging, vol. 7, pp. 629–36, 1997.PubMedCrossRefGoogle Scholar
  82. [80]
    V. Schulen, F. Schick, J. Loichat, U. Helber, P. E. Huppert, G. Laub, and C. D. Claussen. Evaluation of K-space segmented cine sequences for fast functional cardiac imaging. Invest Radiol, vol. 31, pp. 512–22, 1996.PubMedCrossRefGoogle Scholar
  83. [81]
    J. Hennig. K-space sampling strategies. Eur Radiol, vol. 9, pp. 1020–31, 1999.PubMedCrossRefGoogle Scholar
  84. [82]
    D. J. Atkinson and R. R. Edelman. Cineangiography of the heart in a single breath hold with a segmented turboFLASH sequence. Radiology, vol. 178, pp. 357–60, 1991.PubMedGoogle Scholar
  85. [83]
    D. A. Bluemke, J. L. Boxerman, T. Mosher, and J. A. Lima. Segmented K-space cine breath-hold cardiovascular MR imaging: Part 2. Evaluation of aortic vasculopathy. AJR Am J Roentgenol, vol. 169, pp. 401–7, 1997.PubMedGoogle Scholar
  86. [84]
    D. A. Bluemke, J. L. Boxerman, E. Atalar, and E. R. McVeigh. Segmented K-space cine breath-hold cardiovascular MR imaging: Part 1. Principles and technique. AJR Am J Roentgenol, vol. 169, pp. 395–400, 1997.PubMedGoogle Scholar
  87. [85]
    D. Chien, D. J. Atkinson, and R. R. Edelman. Strategies to improve contrast in turboFLASH imaging: reordered phase encoding and k-space segmentation. J Magn Reson Imaging, vol. 1, pp. 63–70, 1991.PubMedCrossRefGoogle Scholar
  88. [86]
    T. A. Tasciyan and D. G. Mitchell. Pulsatile flow artifacts in fast magnetization-prepared sequences. J Magn Reson Imaging, vol. 4, pp. 217–22, 1994.PubMedCrossRefGoogle Scholar
  89. [87]
    S. Sinha and U. Sinha. Black blood dual phase turbo FLASH MR imaging of the heart. J Magn Reson Imaging, vol. 6, pp. 484–94, 1996.PubMedCrossRefGoogle Scholar
  90. [88]
    J. P. Finn and R. R. Edelman. Black-blood and segmented k-space magnetic resonance angiography. Magn Reson Imaging Clin N Am, vol. 1, pp. 349–57, 1993.PubMedGoogle Scholar
  91. [89]
    R. R. Edelman, D. Chien, and D. Kim. Fast selective black blood MR imaging. Radiology, vol. 181, pp. 655–60, 1991.PubMedGoogle Scholar
  92. [90]
    D. Chien, A. Goldmann, and R. R. Edelman. High-speed black blood imaging of vessel stenosis in the presence of pulsatile flow. J Magn Reson Imaging, vol. 2, pp. 437–41, 1992.PubMedCrossRefGoogle Scholar
  93. [91]
    E. M. Haacke, D. Li, and S. Kaushikkar. Cardiac MR imaging: principles and techniques. Top Magn Reson Imaging, vol. 7, pp. 200–17, 1995.PubMedCrossRefGoogle Scholar
  94. [92]
    H. Sakuma, K. Takeda, and C. B. Higgins. Fast magnetic resonance imaging of the heart. Eur J Radiol, vol. 29, pp. 101–13, 1999.PubMedCrossRefGoogle Scholar
  95. [93]
    K. Butts, S. J. Riederer, R. L. Ehman, R. M. Thompson, and C. R. Jack. Interleaved echo planar imaging on a standard MRI system. Magn Reson Med, vol. 31, pp. 67–72, 1994.PubMedCrossRefGoogle Scholar
  96. [94]
    F. Hennel and J. F. Nedelec. Interleaved asymmetric echo-planar imaging. Magn Reson Med, vol. 34, pp. 520–4, 1995.PubMedCrossRefGoogle Scholar
  97. [95]
    F. H. Epstein, S. D. Wolff, and A. E. Arai. Segmented k-space fast cardiac imaging using an echo-train readout. Magn Reson Med, vol. 41, pp. 609–13, 1999.PubMedCrossRefGoogle Scholar
  98. [96]
    S. B. Reeder, E. Atalar, A. Z. Faranesh, and E. R. McVeigh. Multi-echo segmented k-space imaging: an optimized hybrid sequence for ultrafast cardiac imaging. Magn Reson Med, vol. 41, pp. 375–85, 1999.PubMedCrossRefGoogle Scholar
  99. [97]
    H. J. Lamb, J. Doornbos, E. A. van der Velde, M. C. Kruit, J. H. Reiber, and A. de Roos. Echo planar MRI of the heart on a standard system: validation of measurements of left ventricular function and mass. J Comput Assist Tomogr, vol. 20, pp. 942–9, 1996.PubMedCrossRefGoogle Scholar
  100. [98]
    D. A. Leung, J. F. Debatin, S. Wildermuth, G. C. McKinnon, and G. K. von Schulthess. Cardiac imaging: comparison of two-shot echo-planar imaging with fast segmented K-space and conventional gradient-echo cine acquisitions. J Magn Reson Imaging, vol. 5, pp. 684–8, 1995.PubMedCrossRefGoogle Scholar
  101. [99]
    D. R. Wetter, G. C. McKinnon, J. F. Debatin, and G. K. von Schulthess. Cardiac echo-planar MR imaging: comparison of single- and multiple-shot techniques. Radiology, vol. 194, pp. 765–70, 1995.PubMedGoogle Scholar
  102. [100]
    P. Mansfield. Multi planar image formation using NMR spin echoes. J Phys C, vol. 10, pp. L55–L58, 1977.CrossRefGoogle Scholar
  103. [101]
    C. P. Davis, G. C. McKinnon, J. F. Debatin, S. Duewell, and G. K. von Schulthess. Single-shot versus interleaved echo-planar MR imaging: application to visualization of cardiac valve leaflets. J Magn Reson Imaging, vol. 5, pp. 107–12, 1995.PubMedCrossRefGoogle Scholar
  104. [102]
    M. Markl and J. Hennig. Cardiac Multi-Phase k-Space Segmented Echo Planar Imaging with Black Blood Preparation for Fast Velocity Mapping of Myocardial Motion. presented at Magnetic Resonance in Cardiovascular Research, 4th international symposium, Würzburg, Germany, 1998.Google Scholar
  105. [103]
    M. Doyle, E. G. Walsh, G. G. Blackwell, and G. M. Pohost. Block regional interpolation scheme for k-space (BRISK): a rapid cardiac imaging technique. Magn Reson Med, vol. 33, pp. 163–70, 1995.PubMedCrossRefGoogle Scholar
  106. [104]
    M. Doyle, E. G. Walsh, R. E. Foster, and G. M. Pohost. Rapid cardiac imaging with turbo BRISK. Magn Reson Med, vol. 37, pp. 410–7, 1997.PubMedCrossRefGoogle Scholar
  107. [105]
    T. K. Foo, M. A. Bernstein, A. M. Aisen, R. J. Hernandez, B. D. Collick, and T. Bernstein. Improved ejection fraction and flow velocity estimates with use of view sharing and uniform repetition time excitation with fast cardiac techniques. Radiology, vol. 195, pp. 471–8, 1995.PubMedGoogle Scholar

Copyright information

© Kluwer Academic Publishers 2001

Authors and Affiliations

  • Michael Markl
    • 1
  • Britta Schneider
    • 1
  • Jürgen Hennig
    • 1
  1. 1.Abt. Rontgendiagnostik, Sect. of Medical PhysicsUniklinik FreiburgFreiburgGermany

Personalised recommendations