Harmonic Phase MRI

  • Nael F. Osman
  • Jerry L. Prince
Part of the Computational Imaging and Vision book series (CIVI, volume 23)


MR tagging has not become a standard clinical tool in large part because it has required excessive imaging and processing time. Harmonic phase (HARP) MRI addresses this issue by exploiting the unique Fourier spectrum of tagged MR images in fast, automatic computations of cardiac motion requiring very little Fourier data. To date these methods have been used in two-dimensional (2-D) cardiac motion analyses [1–3], have been validated in human and animal studies [4, 5], and have been extended to three dimensions [6]. HARP-MRI requires very little Fourier data, so that real-time, 2-D imaging should be possible in the near future and breath-hold, 3-D imaging may be possible as well.


Circumferential Strain Harmonic Image Pace Site Lagrangian Strain Pace Lead 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    N. F. Osman, W. S. Kerwin, E. R. McVeigh, and J. L. Prince. Cardiac motion tracking using CINE harmonic phase (HARP) magnetic resonance imaging. Magn. Reson. Med., 42(6): 1048–1060, 1999.PubMedCrossRefGoogle Scholar
  2. [2]
    N. F. Osman and J. L. Prince. Visualizing myocardial function using HARP MRI. Phys. in Med. and Bio., 45(6): 1665–1682, 2000.CrossRefGoogle Scholar
  3. [3]
    N. F. Osman, E. R. McVeigh, and J. L. Prince. Imaging heart motion using harmonic phase MRI. IEEE Trans. Med. Imag., 19(3): 186–202, 2000.CrossRefGoogle Scholar
  4. [4]
    J. Garot, D. Bluemke, N. F. Osman, C. Rochitte, E. R. McVeigh, E. Zerhouni, J. Prince, and J. Lima. Fast determination of regional myocardial strain fields from tagged cardiac images using harmonic phase (HARP) magnetic resonance imaging. Circulation, 101:981–988, 2000.PubMedGoogle Scholar
  5. [5]
    J. Garot, D. Bluemke, N. F. Osman, C. Rochitte, E. R. McVeigh, E. Zerhouni, J. L. Prince, and J. A. Lima. Transmural contractile reserve after reperfused myocardial infarction in the dog. Journal of American College of Cardiology, to appear.Google Scholar
  6. [6]
    N. F. Osman, S. Sampath, and J. L. Prince. Measuring 3d myocardial strain in a thin slice using harmonic phase MRI. In Proceedings of SPIE, Medical Imaging 2000: Physiology and Function from Multidimensional Images, San Diego, CA, February 12–17, 2000.Google Scholar
  7. [7]
    J. L. Barron, D. J. Fleet, and S. S. Beauchemin. Performance of optical flow techniques. International Journal of Computer Vision, 12(1):43–77, 1994.CrossRefGoogle Scholar
  8. [8]
    N. F. Osman and J. L. Prince. Direct calculation of 2D components of myocardial strain using sinusoidal MR tagging. In Proc. SPIE Medical Imaging: Image Processing Conference, February 1998.Google Scholar
  9. [9]
    N. F. Osman and J. L. Prince. Motion estimation from tagged MR images using angle images. In Proc. Int. Conf. Imag. Proc. volume 1, pages 704–708. Comp. Soc. Press, 1998. Chicago.Google Scholar
  10. [10]
    N. F. Osman and J. L. Prince. On the design of the bandpass filters in harmonic phase MRI. Int. Conf. Imag. Proc. 2000 (ICIP00).Google Scholar
  11. [11]
    E. R. McVeigh, F.W. Prinzen, B.T. Wyman, J.E. Tsitlik, H.P. Halperin, and W.C. Hunter. Imaging asynchronous mechanical activation of the paced heart with tagged MRI. Magn. Reson. Med., 39(4):507–513, April 1998.PubMedCrossRefGoogle Scholar
  12. [12]
    N. J. Pelc, R.J. Herfkens, A. Shimakawa, and D. Enzmann. Phase contrast cine magnetic resonance imaging. Magn. Reson. Quarterly, 7(4):229–254, 1991.Google Scholar
  13. [13]
    N. J. Pelc, M. Drangova, L. R. Pelc, Y. Zhu, D. C. Noll, B. S. Bowman, and R. J. Herfkens. Tracking of cyclic motion with phase-contrast cine MR velocity data. J. Magn. Reson. Imaging, 5:339–345, 1995.PubMedCrossRefGoogle Scholar
  14. [14]
    R. T. Constable, K. M. Rath, A. J. Sinusas, and J. C. Gore. Development and evaluation of tracking algorithms for cardiac wall motion analysis using phase velocity MR imaging. Magn. Res. Med., 32:33–42, 1994.CrossRefGoogle Scholar
  15. [15]
    D. J. Fleet and A. D. Jepson. Computation of component image velocity from local phase information. Int. Jour. of Comp. Vision, 5(1):77–104, 1990.CrossRefGoogle Scholar
  16. [16]
    G. M. Beache, V. J. Wedeen, R. M. Weisskoff, P. T. O’Gara, B. P. Poncelet, D. A. Chesler, T. J. Brady, B. R. Rosen, and R. E. Dinsmore. Intramural mechanics in hypertrophic cardiomyopathy: Functional mapping with strain-rate MR imaging. Radiology, 197:117–124, 1995.PubMedGoogle Scholar
  17. [17]
    V. J. Wedeen. Magnetic resonance imaging of myocardial kinematics. technique to detect, localize, and quantify the strain rates of the active human myocardium. Magn. Reson. Med., 27:52–67, 1992.PubMedCrossRefGoogle Scholar
  18. [18]
    V. J. Wedeen, R. M. Weisskoff, T. G. Reese, G. M. Beache, B. P. Poncelet, B. R. Rosen, and R. E. Dinsmore. Motionless movies of myocardial strain-rates using stimulated echoes. Magn. Res. Med., 33(3):401–8, 1995.CrossRefGoogle Scholar
  19. [19]
    M. E. Gurtin. An Introduction to Continuum Mechanics. Academic Press, Inc., San Diego, CA, 1981.Google Scholar
  20. [20]
    J.T. Marcus, M.J.W. Gotte, A.C. Van Rossum, J.P.A. Kuijer, R.M. Heethaar, L. Axel, and C.A. Visser. Myocardial function in infarcted and remote regions early after infarction in man: Assessment by magnetic resonance tagging and strain analysis. Magn. Reson. Med., 38:803–810, 1997.PubMedCrossRefGoogle Scholar

Copyright information

© Kluwer Academic Publishers 2001

Authors and Affiliations

  • Nael F. Osman
    • 1
  • Jerry L. Prince
    • 2
  1. 1.Department of RadiologyJohns Hopkins UniversityBaltimoreUSA
  2. 2.Electrical and Computer EngineeringJohns Hopkins UniversityBaltimoreUSA

Personalised recommendations