Finite Element Modeling for Three-Dimensional Motion Reconstruction and Analysis

  • Kevin F. Augenstein
  • Alistair A. Young
Part of the Computational Imaging and Vision book series (CIVI, volume 23)


Magnetic resonance (MR) tissue tagging has become a useful tool for noninvasive analysis of heart wall motion (see Chapter 2). Typically, multiple parallel tagging planes are created orthogonal to the imaging plane in a short time interval (5–12 ms) on detection of the R wave of the ECG (end-diastole). Often a grid of tag planes is created, whose intersection with the image plane gives rise to dark bands (“image stripes”) in the image, 1–2 mm in width and spaced 5–10 mm apart. With the advent of fast imaging techniques (segmented k-space, echo planar, SENSE and SMASH techniques), it is now possible to obtain a complete dataset suitable for 4D analysis in 5–15 minutes (a 4D dataset typically contains 5–8 short axis slices and 2–6 long axis slices in various orientations, each at 10–20 frames in the cardiac cycle).


Element Parameter Deformation Gradient Tensor Image Stripe Left Ventricular Deformation Left Ventricle Apex 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    Cootes, I. F., Hill, A., Taylor, C. J., and Haslam, J. (1994). The use of active shape models for locating structures in medical images. Image and Vision Computing, 12(6):355–66.CrossRefGoogle Scholar
  2. [2]
    Denney, Jr, T. S. and McVeigh, E. R. (1997). Model-free reconstruction of three-dimensional myocardial strain from planar tagged mr images. Journal of Magnetic Resonance Imaging, 7:799–810.PubMedCrossRefGoogle Scholar
  3. [3]
    Fleute, M. and Lavallée, S. (1998). Building a complete surface model from sparse data using statistical shape models: Applications to computer assisted knee surgery. Medical Image Computing and Computer-Assisted Intervention. First Internation Conference. , pages 879–87.Google Scholar
  4. [4]
    Fung, Y. C. (1965). Foundations of Solid Mechanics. Prentice-Hall, New Jersey.Google Scholar
  5. [5]
    Gentles, I., Cowan, B. R., Occleshaw, C., and Young, A. A. (1999). Normal left ventricular systolic function following repair of coarctation of the aorta. American Heart Association, Atlanta.Google Scholar
  6. [6]
    Hashima, A. R., Young, A. A., McCulloch, A. D., and Waldman, L. K. (1993). Nonhomogeneous analysis of epicardial strain distributions during acute myocardial ischemia in the dog. Journal of Biomechanics, 26:19–35.PubMedCrossRefGoogle Scholar
  7. [7]
    Hunter, P. J. and Smaill, B. H. (1988). The analysis of cardiac function: A continuum approach. Progress in Biophysics and Molecular Biology, 52:101–64.PubMedCrossRefGoogle Scholar
  8. [8]
    Le Grice, I. J., Hunter, P. J., and Smaill, B. H. (1997). Laminar structure of the heart: a mathematical model. American Journal of Physiology, 272:H2466–76.Google Scholar
  9. [9]
    Le Grice, I. J., Smaill, B. H., Chai, L. Z., Edgar, S. G., Gavin, J. B., and Hunter, P. J. (1995). Laminar structure of the heart: ventricular myocyte arrangement and connective tissue architecture in the dog. American Journal of Physiology, 269:H571–82.Google Scholar
  10. [10]
    Lorensen, W. E. and Cline, H. E. (1987). Marching cubes: a high resolution 3d surface construction algorithm. Computer Graphics, 21:163–169.CrossRefGoogle Scholar
  11. [11]
    Marquardt, D. W. (1963). An algorithm for least squares estimation of nonlinear parameters. J Soc Indust Appl Math, 11:431–41.CrossRefGoogle Scholar
  12. [12]
    Nielsen, P. M. F., Le Grice, I. J., Smaill, B. H., and Hunter, P. J. (1991). Mathematical model of the geometry and fibrous structure of the heart. American Journal of Physiology, 260:H1365–H1378.PubMedGoogle Scholar
  13. [13]
    O’Dell, W. G., Moore, C. C., Hunter, W. C., Zerhouni, E. A., and McVeigh, E. R. (1995). Three-dimensional myocardial deformations: Calculation with displacement field fitting to tagged mr images. Radiology, 195(3):829–35.PubMedGoogle Scholar
  14. [14]
    O’Donnell, T., Boult, T., and Gupta, A. (1996). Global models with parametric offsets as applied to cardiac motion recovery. Computer Vision and Pattern Recognition, pages 293–99, New York. IEEE Press.Google Scholar
  15. [15]
    O’Donnell, T., Gupta, A., and Boult, T. (1995). The hybrid volumetric ven-triculoid: New model for MR-SPAMM 3-D analysis. Computers in Cardiology, pages 5–8, New York. CRC Press.Google Scholar
  16. [16]
    Park, J., Metaxas, D., and Axel, L. (1996a). Analysis of left ventricular wall motion based on volumetric deformable models and MRI-SPAMM. Medical Image Analysis, 1(1):53–71.PubMedCrossRefGoogle Scholar
  17. [17]
    Park, J., Metaxas, D., Young, A. A., and Axel, L. (1996b). Deformable models with parameter functions for cardiac motion analysis from tagged mri data. IEEE Trans. Medical Imaging, 15(3):278–89.CrossRefGoogle Scholar
  18. [18]
    Terzopoulos, D. (1988). The computation of visible-surface representations. IEEE Trans. Pattern Analysis and Machine Intelligence, 10:417–438.CrossRefGoogle Scholar
  19. [19]
    Young, A. A. (1989). Epicardial deformation from coronary cinéangiograms. Glass, L., Hunter, P. J., and McCulloch, A. D., editors, Theory of Heart, pages 175–208. Springer-Verlag.Google Scholar
  20. [20]
    Young, A. A. (1999). Model tags: direct three-dimensional tracking of heart wall motion from tagged magnetic resonance images. Medical Image Analysis, 3(4):361–72.PubMedCrossRefGoogle Scholar
  21. [21]
    Young, A. A. and Axel, L. (1992a). Non-rigid heart wall motion using MR tagging. Proc Computer Vision and Pattern Recognition, pages 388–404.Google Scholar
  22. [22]
    Young, A. A. and Axel, L. (1992b). Three-dimensional motion and deformation of the heart wall: Estimation with spatial modulation of magnetization-a model-based approach. Radiology, 185(1):241–7.PubMedGoogle Scholar
  23. [23]
    Young, A. A., Biederman, R. W. W., Doyle, M., Thrupp, S., and Dell’Italia, L. J. (1998). Three dimensional left ventricular deformation in hypertensive LV hypertrophy. Proc. International Society of Magnetic Resonance in Medicine, 1, page 475.Google Scholar
  24. [24]
    Young, A. A. and Cowan, B. R. (1997). Frame-based (3D) interactive modeling of heart motion. Proceedings IEEE Nonrigid and Articulated Motion Workshop, pages 128–35.Google Scholar
  25. [25]
    Young, A. A. and Cowan, B. R. (1998). Four dimensional modeling of LV motion. Proceedings International Society of Magnetic Resonance in Medicine, volume 1, page 557.Google Scholar
  26. [26]
    Young, A. A., Cowan, B. R., Thrupp, S. F., Hedley, W. J., and Dell’Italia, L. J. (2000). Left ventricular mass and volume: fast calculation with guide-point modeling on MR images. Radiology, 216(2):597–602.PubMedGoogle Scholar
  27. [27]
    Young, A. A., Dokos, S., Powell, K. A., Strum, B., McCulloch, A. D., McCarthy, P. M., and White, R. D. (1999). Regional heterogeneity and recovery of septal function after successful (LV) volume reduction in nonischemic dilated cardiomyopathy. American Heart Association, Atlanta.Google Scholar
  28. [28]
    Young, A. A., Fayad, Z. A., and Axel, L. (1996). Right ventricular midwall surface motion and deformation using magnetic resonance tagging. American Journal of Physiology, 271(6):H2677–88.PubMedGoogle Scholar
  29. [29]
    Young, A. A., Hunter, P. J., and Smaill, B. H. (1989). Epicardial surface estimation from coronary cinéangiograms. Computer Vision and Graphics, 47:111–27.CrossRefGoogle Scholar
  30. [30]
    Young, A. A., Kraitchman, D. L., Dougherty, L., and Axel, L. (1995). Tracking and finite element analysis of stripe deformation in magnetic resonance tagging. IEEE Transactions on Medical Imaging, 14(3):413–21.PubMedCrossRefGoogle Scholar
  31. [31]
    Young, A. A., Kramer, C. M., Ferrari, V. A., Axel, L., and Reicheck, N. (1994). Three-dimensional left ventricular deformation in hypertrophic cardiomyopathy. Circulation, 90(2):854–67.PubMedGoogle Scholar
  32. [32]
    Zienkiewicz, O. C. and Morgan, K. (1982). Finite elements and approximation. Wiley, New York.Google Scholar

Copyright information

© Kluwer Academic Publishers 2001

Authors and Affiliations

  • Kevin F. Augenstein
    • 1
  • Alistair A. Young
    • 2
  1. 1.Department of Engineering Science, School of EngineeringUniversity of AucklandNew Zealand
  2. 2.Department of Anatomy with Radiology, School of MedicineUniversity of AucklandNew Zealand

Personalised recommendations