Advertisement

Myocardial Spatiotemporal Tracking

  • Yudong Zhu
  • Norbert J. Pelc
Chapter
  • 160 Downloads
Part of the Computational Imaging and Vision book series (CIVI, volume 23)

Abstract

The past two decades of magnetic resonance imaging (MRI) research witnessed the development of noninvasive technologies that are capable of both motion quantification and spatiotemporal resolution. Representative examples include the MR tagging [1–5] and the phase contrast MR velocity mapping techniques [6–10]. Among clinical applications that have been established, or are being developed, use of the technologies for evaluating cardiac motion may be one that is most rewarding, yet exceedingly challenging.

Keywords

Strain Field Material Point Transverse Magnetization Initial Mesh Phase Contrast Magnetic Resonance Imaging 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    E. Zerhouni, D. Parish, W. Rogers, A. Yang, and E. Shapiro. Human heart: tagging with MR imaging — a method for noninvasive assessment of myocardial motion. Radiology 169: 59–63 (1988).PubMedGoogle Scholar
  2. [2]
    L. Axel and L. Dougherty. MR imaging of motion with spatial modulation of magnetization. Radiology 172: 349–350 (1989).PubMedGoogle Scholar
  3. [3]
    L. Axel and L. Dougherty. Heart wall motion: improved method of spatial modulation of magnetization for MR imaging. Radiology 172: 349–350 (1989).PubMedGoogle Scholar
  4. [4]
    L. Axel. Three-dimensional MR imaging of heart wall motion. Radiology 173: 233 (1989)Google Scholar
  5. [5]
    E. R. McVeigh and E. Zerhouni. Noninvasive measurement of transmural gradients in myocardial strain with MR imaging. Radiology 180: 677–683 (1991)PubMedGoogle Scholar
  6. [6]
    P. Van Dijk. Direct cardiac NMR imaging of heart wall and blood flow velocity. Journal Computer Assisted Tomography 8: 429–436 (1984).CrossRefGoogle Scholar
  7. [7]
    G. L. Nayler, D. N. Firmin, and D. B. Longmore. Blood flow imaging by cine magnetic resonance. Journal of Computer Assisted Tomography 10:715–722 (1986).PubMedCrossRefGoogle Scholar
  8. [8]
    N. J. Pelc, R. J. Herfkens, A. Shimakawa, and D. R. Enzmann. Phase Contrast Cine Magnetic Resonance Imaging. Magnetic Resonance Quarterly 7: 229–254(1991).PubMedGoogle Scholar
  9. [9]
    V J. Wedeen. Magnetic resonance imaging of myocardial kinematics. Technique to detect, localize, and quantify the strain rates of active human myocardium. Magn. Reson. Med. 27: 52–67 (1992).PubMedCrossRefGoogle Scholar
  10. [10]
    N. J. Pelc, R. J. Herfkens, and L. R. Pelc. 3D analysis of myocardial motion and deformation with phase contrast cine MRI. Proc. SMRM. 18 (1992).Google Scholar
  11. [11]
    M. V. Herman and R. Gorlin. Implications of left ventricular asynergy. American Journal of Cardiology, 23:538–547, (1969).PubMedCrossRefGoogle Scholar
  12. [12]
    W. A. Baxley and T J. Reeves. Abnormal regional myocardial performance in coronary artery disease. Progress in Cardiovascular Diseases, 13:405–421, (1971).PubMedCrossRefGoogle Scholar
  13. [13]
    M. V. Herman, R. A. Heinle, M. D. Klein, and R. Gorlin. Localized disorders in myocardial contraction. New England Journal of Medicine 227:222–232 (1967).CrossRefGoogle Scholar
  14. [14]
    J. S. Borer, S. L. Bacharach, M. V. Green, K. M. Kent, S. E. Epstein, and G. S. Johnston. Real-time radionuclide cineangiography in the noninvasive evaluation of global and regional left ventricular function at rest and during exercise in patients with coronary-artery disease. New England Journal of Medicine 296:839–844 (1977).PubMedCrossRefGoogle Scholar
  15. [15]
    J. Tillisch, R. Brunken, R. Marshall, M. Schwaiger, M. Mandelkern, M. Phelps, and H. Schelbert. Reversibility of cardiac wall-motion abnormalities predicted by positron tomography. New England Journal of Medicine 314:884–888 (1986).PubMedCrossRefGoogle Scholar
  16. [16]
    A. N. Lieberman, J. L. Weiss, B. I. Judgutt, and et al. Two-dimensional echocardiography and infarct size: relationship of regional wall motion and thickening to the extent of myocardial infarction in the dog. Circulation 63:739–746 (1981).PubMedCrossRefGoogle Scholar
  17. [17]
    J. F. Ren, M. N. Kotier, A. H. Hakki, I. P. Panidis, G. S. Mintz, and J. Ross. Quantification of regional left ventricular function by two-dimensional echocardiography. 1. Pattern of contraction of the normal ventricle. American Heart Journal 110:552–560 (1985).PubMedCrossRefGoogle Scholar
  18. [18]
    P. E. Assmann, C. J. Slager, S. G. Van der Borden, J. G. P. Tijssen, J. A. Oomen, and J. R. Roelandt. Comparison of models for quantitative left ventricular wall motion analysis from two-dimensional echocardiograms during acute myocardial infarction. American Journal of Cardiology 71:1262–1269 (1993).PubMedCrossRefGoogle Scholar
  19. [19]
    R. F. Mattrey and C. B. Higgins. Detection of regional myocardial dysfunction during ischemia with computerized tomography: documentation and physiologic basis. Investigative Radiology 17:329–335 (1982).PubMedCrossRefGoogle Scholar
  20. [20]
    D. Farmer, M. J. Lipton, C. B. Higgins, H. Ringertz, P. B. Dean, R. Sievers, and D. P. Boyd. In vivo assessment of left ventricular wall and chamber dynamics during transient myocardial ischemia using cine computed tomography. American Journal of Cardiology 55:560–565 (1985).PubMedCrossRefGoogle Scholar
  21. [21]
    M. R. Fisher, G. K. von Schulthess, and C. B. Higgins. Multiphasic cardiac magnetic resonance imaging: normal regional left ventricular wall thickening. American Journal of Roentgenology 145:27–40 (1985).PubMedGoogle Scholar
  22. [22]
    C. B. Higgins, W. Holt, P. Pflugfelder, and U. Sechtem. Functional evaluation of the heart with magnetic resonance imaging. Magnetic Resonance in Medicine 6:121–139 (1988).PubMedCrossRefGoogle Scholar
  23. [23]
    H. Sakuma, N. Fujita, T K. F. Foo, G. R. Caputo, S. J. Nelson, J. Hartiala, A. Shimakawa, and C. B. Higgins. Evaluation of left ventricular volume and mass with breath-hold cine MR imaging. Radiology 188:377–380 (1993).PubMedGoogle Scholar
  24. [24]
    E. R. Holman, H. W. Vliegen, R. J. van der Geest, J. H. C. Reiber, P. R. M. van Dijkman, A. van der Laarse, A. de Roos, and E. E. van der Wall. Quantitative analysis of regional left ventricular function after myocardial infarction in the pig assessed with cine magnetic resonance imaging. Magnetic Resonance in Medicine 34:161–169 (1995).PubMedCrossRefGoogle Scholar
  25. [25]
    H. L. Falsetti, M. L. Marcus, R. E. Kerber, and D. J. Skorton. Quantification of myocardial ischemia and infarction by left ventricular imaging. Circulation 63: 747–751 (1981).PubMedCrossRefGoogle Scholar
  26. [26]
    L. Axel, R. C. Gonçalves, and D. Bloomgarden. Regional heart wall motion: two-dimensional analysis and functional imaging with MR imaging. Radiology 183: 745–750(1992).PubMedGoogle Scholar
  27. [27]
    N. B. Ingels, G. T. Daughters, E. B. Stinson, and E. L. Alderman. Measurements of midwall dynamics in intact man by radiography of surgically implanted markers. Circulation 52:859–867 (1975).PubMedGoogle Scholar
  28. [28]
    C. J. Slager, T. E. H. Hooghoudt, P. W. Serruys, J. C. H. Schuurbiers, J. H. C. Reiber, G. T. Meester, P. D. Verdouw, and P. G. Hugenholtz. Quantitative assessment of regional left ventricular motion using endocardial landmarks. Journal of the American College of Cardiology 7:317–326 (1986).PubMedCrossRefGoogle Scholar
  29. [29]
    H. C. Kim, B. G. Min, M. M. Lee, J. D. Seo, Y. W. Lee, and M. C. Han. Estimation of local cardiac wall deformation and regional wall stress from biplane coronary cineangiograms. IEEE Trans. Biomed. Eng. 32:503–511 (1985).PubMedCrossRefGoogle Scholar
  30. [30]
    C. W. Chen and T. S. Huang. Epicardial motion and deformation estimation from coronary artery bifurcation points. Proc. of 3rd International Conference on Computer Vision, pp. 456–459 (1990).Google Scholar
  31. [31]
    A. A. Young. Epicardial deformation from coronary cineangiograms. In L. Glass, P. Hunter, A. McCulloch, eds., Theory of Heart: biomechanics, biophysics, and nonlinear dynamics of cardiac function New York, Springer-Verlag, pp. 175–207(1991).Google Scholar
  32. [32]
    J. S. Rankin, P. A. McHale, C. E. Arentzen, D. Ling, J. C. Greenfield, and R. W. Anderson. The three-dimensional dynamic geometry of the left ventricle in the conscious dog. Circulation Research 39:304–313 (1976).PubMedGoogle Scholar
  33. [33]
    P. Theroux, J. J. Ross, D. Franklin, J. Covell, C. Bloor, and S. Sasayama. Regional myocardial function and dimensions early and late after myocardial infarction in the unanesthetized dog. Circulation Research 40:158–165, (1977).PubMedGoogle Scholar
  34. [34]
    F. J. Villarreal, L. K. Waldman and W. Y. W. Lew. Technique for measuring regional two-dimensional finite strains in canine left ventricle. Circulation Research 62:711–721 (1988).PubMedGoogle Scholar
  35. [35]
    J. H. Myers, M. C. Stirling, M. Choy, A. J. Buda, and K. P. Gallagher. Direct measurement of inner and outer wall thickening dynamics with epicardial echocardiography. Circulation 74:164–172 (1986).PubMedCrossRefGoogle Scholar
  36. [36]
    D. C. Harrison, A. Goldblatt, E. Braunwald, G. Glick, and D. T. Mason. Studies on cardiac dimensions in intact unanesthetized man. Circulation Research, 13:448–467 (1963).PubMedGoogle Scholar
  37. [37]
    R. W. Brower, H. J. ten Katen, and G. T. Meester. Direct method for determining regional myocardial shortening after bypass surgery from radiopaque markers in man. American Journal of Cardiology 41:1222–1229 (1978).PubMedCrossRefGoogle Scholar
  38. [38]
    N. B. Ingels, G. T. Daughters, E. B. Stinson, and E. L. Alderman. Evaluation of methods for quantitating left ventricular segmental wall motion in man using myocardial markers as a standard. Circulation 61:966–972 (1980).PubMedGoogle Scholar
  39. [39]
    G. Daughters, W. Sanders, D. Miller, A. Schwarzkopf, C. Mead, and N. Ingels. A comparison of two analytical systems for 3-D reconstruction from biplane videoradiograms. Computers in Cardiology, 15:79–82 (1989).Google Scholar
  40. [40]
    E. L. Hahn. Detection of sea-water motion by nuclear precession. Journal of Geophysical Research 65:776–777 (1960).CrossRefGoogle Scholar
  41. [41]
    Y. Zhu, M. Drangova, and N. J. Pelc. Fourier tracking of myocardial motion using cine PC data. Magn. Reson. Med. 35: 471–480 (1996).PubMedCrossRefGoogle Scholar
  42. [42]
    A. A. Young and L. Axel. Three-dimensional motion and deformation of the heart wall: estimation with spatial modulation of magnetization — a model-based approach. Radiology 185:241–247 (1992).PubMedGoogle Scholar
  43. [43]
    Y Zhu, M. Drangova and N. J. Pelc. Estimation of deformation gradient and strain from cine-PC velocity data. IEEE Transactions on Medical Imaging vol. 16, no. 6, pp. 840–851 (1997).PubMedCrossRefGoogle Scholar
  44. [44]
    N. R. Clark, N. Reichek, P. Bergey, E. A. Hoffman, D. Brownson, L. Palmon, and L. Axel. Circumferential Myocardial Shortening in the Normal Human Left Ventricle. Circulation 84: 67–74 (1991).PubMedGoogle Scholar
  45. [45]
    R. J. Herfkens, N. J. Pelc, L. R. Pelc, and J. R. Sayre. Right ventricular strain measured by phase contrast MRI. Proc. SMRM. 163 (1991).Google Scholar
  46. [46]
    R. T. Constable, K. M. Rath, A. J. Sinusas, and J. C. Gore. Development and evaluation of tracking algorithms for cardiac wall motion analysis using phase velocity MR mapping. Magn. Reson. Med. 32: 33–42 (1994).PubMedCrossRefGoogle Scholar
  47. [47]
    N. J. Pelc, M. Drangova, L. R. Pele, Y. Zhu, D. Noll, B. Bowman, and R. J. Herfkens. Tracking of cyclical motion using phase contrast cine MRI velocity data. JMRI 5:339–345 (1995).PubMedCrossRefGoogle Scholar
  48. [48]
    A. Lingamneni, P. A. Hardy, K. Powell, N. J. Pelc, and R. D. White. Validation of cine phase-contrast MR imaging for motion analysis. JMRI 5: 331–338 (1995).PubMedCrossRefGoogle Scholar
  49. [49]
    D. Terzopoulos and D. Metaxas. Dynamic 3D models with local and global deformations: deformable superquadrics. PAMI, vol. 13, no. 7, pp. 703–714 (1991).CrossRefGoogle Scholar
  50. [50]
    W. G. O’Dell, C. C. Moore, W. C. Hunter, E. A. Zerhouni, and E. R. McVeigh. Displacement field fitting for calculating 3D myocardial deformations from tagged MR images. Radiology 195:829–835 (1995).PubMedGoogle Scholar
  51. [51]
    T. J. R. Hughes. The Finite Element Method: Linear Static and Dynamic Finite Element Analysis. Prentice-Hall (1987).Google Scholar
  52. [52]
    A. Pentland and B. Horowitz. Recovery of nonrigid motion and structure. PAMI, vol. 13, no. 7, pp. 730–742 (1991).CrossRefGoogle Scholar
  53. [53]
    F. G. Meyer, R. T. Constable, A. J. Sinusas, and J. S. Duncan. Tracking Myocardial Deformation Using Phase Contrast MR Velocity Fields: A Stochastic Approach. IEEE Trans. Med. Imaging vol. 15, no. 4: 453–465 (1996).PubMedCrossRefGoogle Scholar
  54. [54]
    Y. Zhu and N. J. Pelc. Myocardial function analysis using a spatiotemporal finite element mesh model and cine-PC velocity data. Proc. of the 5th meeting of the ISMRM, p. 464 (1997).Google Scholar
  55. [55]
    Y. Zhu and N. J. Pelc. A spatiotemporal finite element mesh model of cyclical deforming motion and its application in myocardial motion analysis using phase contrast MR images. Proc. IEEE International Conference on Image Processing, vol II, pp. 117–120 (1997).Google Scholar
  56. [56]
    Y. Zhu and N. J. Pelc. A spatiotemporal model of cyclic kinematics and its application to analyzing nonrigid motion with MR velocity images. IEEE Transactions on Medical Imaging vol. 18, no. 7, pp. 557–569 (1999).PubMedCrossRefGoogle Scholar
  57. [57]
    Y. Zhu, M. Drangova, and N. J. Pelc. Fourier tracking of myocardial motion using cine PC data. Proc. of the 2nd meeting of the Society of Magnetic Resonance, p. 1477 (1994).Google Scholar
  58. [58]
    M. Drangova, Y Zhu, B. S. Bowman, and N. J. Pelc. In vitro verification of myocardial-motion tracking from phase-contrast velocity data. Magnetic Resonance Imaging, 16:863–870 (1998).PubMedCrossRefGoogle Scholar
  59. [59]
    A. Amini and J. Duncan. Pointwise tracking of left-ventricular motion in 3-D. Proc. IEEE Workshop on Visual Motion, pp. 294–298 (1991).Google Scholar
  60. [60]
    S. K. Mishra and D. B. Goldgof. Motion analysis and modeling of epicardial surfaces from point and line correspondences. Proc. IEEE Workshop on Visual Motion, pp. 300–305 (1991).Google Scholar
  61. [61]
    A. A. Young, L. Axel, L. Dougherty, D. K. Bogen, and C. S. Parenteau. Validation of Tagging with MR Imaging to Estimate Material Deformation. Radiology 188:101–108(1993).PubMedGoogle Scholar
  62. [62]
    M. Drangova, B. Bowman, and N. J. Pelc. Physiologic motion phantom for MRI applications. JMRI 6:513–518 (1996).PubMedCrossRefGoogle Scholar
  63. [63]
    Y. Zhu and N. J. Pelc. Three-dimensional motion tracking with volumetric phase contrast MR velocity imaging. Journal of Magnetic Resonance Imaging, 9:111–118 (1999).PubMedCrossRefGoogle Scholar
  64. [64]
    D. N. Firmin, P. D. Gatehouse, G. Z. Yang, P. Jhooti, and J. Keegan. A 7-dimensional echo-planar flow imaging technique using a novel k-space sampling scheme with velocity compensation. Proc. of the 5th meeting of the ISMRM, p. 118(1997).Google Scholar
  65. [65]
    D. K. Sodickson and W. J. Manning. Simultaneous acquisition of spatial harmonics (SMASH): fast imaging with radiofrequency coil arrays. Magn. Reson. Med. 38: 591–603 (1997).PubMedCrossRefGoogle Scholar
  66. [66]
    Y Zhu. Quantifying cyclic motion and deformation with magnetic resonance velocity images. Ph.D. Dissertation, Department of Electrical Engineering, Stanford University, Palo Alto, California, 1998.Google Scholar

Copyright information

© Kluwer Academic Publishers 2001

Authors and Affiliations

  • Yudong Zhu
    • 1
  • Norbert J. Pelc
    • 2
  1. 1.GE Corporate Research and DevelopmentSchenectadyUSA
  2. 2.Stanford UniversityPalo AltoUSA

Personalised recommendations