Regional Stress and Strain in Healthy and Diseased Ventricular Myocardium

  • Andrew D. McCulloch
Part of the Computational Imaging and Vision book series (CIVI, volume 23)


The primary function of the heart is fundamentally mechanical. The basic measures of myocardial mechanics are the three-dimensional stresses and strains, which depend on position and orientation in the myocardium, and vary in time through the cardiac cycle. A host of physiological and pathophysiological processes are directly or indirectly regulated by regional myocardial stress and strain. Most of these factors — such as coronary flow and myocyte energetics, excitation and arrhythmia, hypertrophy and development, remodeling and repair — themselves affect stress and strain in the ventricular wall. For example, increased wall stress due to altered hemodynamic load can cause ventricular hypertrophy, which in turn alters wall stress by changing chamber geometry and material properties. If this feedback loop establishes a new equilibrium, hypertrophy can be compensated. But if stress continues to increase, a transition to decompensated hypertrophy and pump failure can ensue. As treatments for myocardial infarction and ischemia have improved, the incidence of congestive heart failure has risen alarmingly. Some important load-induced responses are now known to be regulated by stress and strain directly at the level of the myocyte, endothelial cell and fibroblast. For these advances in basic cardiac biology to be applied in the clinical setting, a better understanding of the biomechanics of ventricular remodeling in-vivo will surely be needed.


Diffusion Tensor Imaging Ventricular Wall Wall Stress Regional Stress Magnetic Resonance Elastography 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    Arts, T., K. D. Costa, J. W. Covell, and A. D. McCulloch. Relating myocardial laminar architecture to shear strain and muscle fiber orientation. Am J Physiol: Heart Circ Physiol (in press):, 2001.Google Scholar
  2. [2]
    Arts, T., R. S. Reneman, and P. C. Veenstra. A model of the mechanics of the left ventricle. Ann Biomed Eng 7: 299–318, 1979.PubMedCrossRefGoogle Scholar
  3. [3]
    Arts, T., P. C. Veenstra, and R. S. Reneman. Epicardial deformation and left ventricular wall mechanics during ejection in the dog. Am J Physiol 243: H379–H390, 1982.PubMedGoogle Scholar
  4. [4]
    Basser, P. J., J. Mattiello, and D. LeBihan. MR diffusion tensor spectroscopy and imaging. Biophys J 66: 259–67., 1994.PubMedCrossRefGoogle Scholar
  5. [5]
    Croisille, P., C. C. Moore, R. M. Judd, J. A. Lima, M. Arai, E. R. McVeigh, L. C. Becker, and E. A. Zerhouni. Differentiation of viable and nonviable myocardium by the use of three dimensional tagged MRI in 2-day-old reperfused canine infarcts. Circulation 99: 284–91, 1999.PubMedGoogle Scholar
  6. [6]
    Delhaas, T., T. Arts, F. W. Prinzen, and R. S. Reneman. Estimates of regional work in the canine left ventricle. Prog Biophys Mol Biol 69: 273–87, 1998.PubMedCrossRefGoogle Scholar
  7. [7]
    Duncan, J., P. Shi, T. Constable, and A. Sinusas. Physical and geometrical modeling for image- based recovery of left ventricular deformation. Prog Biophys Mol Biol 69: 333–51, 1998.PubMedCrossRefGoogle Scholar
  8. [8]
    Dutt, V., R. R. Kinnick, R. Muthupillai, T. E. Oliphant, R. L. Ehman, and J. F. Greenleaf. Acoustic shear-wave imaging using echo ultrasound compared to magnetic resonance elastography. Ultrasound Med Biol 26: 397–403., 2000.PubMedCrossRefGoogle Scholar
  9. [9]
    Garrido, L., V. J. Wedeen, K. K. Kwong, U. M. Spencer, and H. L. Kantor. Anisotropy of water diffusion in the myocardium of the rat. Circ Res 74: 789–93, 1994.PubMedGoogle Scholar
  10. [10]
    Guccione, J. M., A. D. McCulloch, and L. K. Waldman. Passive material properties of intact ventricular myocardium determined from a cylindrical model. J Biomech Eng 113: 42–55, 1991.PubMedCrossRefGoogle Scholar
  11. [11]
    Hexeberg, E., D. C. Homans, and R. J. Bache. Interpretation of systolic wall thickening. Can thickening of a discrete layer reflect fiber performance? Cardiovasc Res 29: 16–21, 1995.PubMedGoogle Scholar
  12. [12]
    Hsu, E. W., A. L. Muzikant, S. A. Matulevicius, R. C. Penland, and C. S. Henriquez. Magnetic resonance myocardial fiber-orientation mapping with direct histological correlation. Am J Physiol 274: H1627–34, 1998.PubMedGoogle Scholar
  13. [13]
    Hunter, P. J., and B. H. Smaill. The analysis of cardiac function: a continuum approach. Prog Biophys Mol Biol 52: 101–164, 1989.CrossRefGoogle Scholar
  14. [14]
    Karlon, W. J., J. W. Covell, A. D. McCulloch, J. J. Hunter, and J. H. Omens. Automated measurement of myofiber disarray in transgenic mice with ventricular expression of ras. Anatomical Record 252: 612–625, 1998.PubMedCrossRefGoogle Scholar
  15. [15]
    Kraitchman, D. L., N. Wilke, E. Hexeberg, M. Jerosch-Herold, Y. Wang, T. B. Parrish, C. N. Chang, Y. Zhang, R. J. Bache, and L. Axel. Myocardial perfusion and function in dogs with moderate coronary stenosis. Magn Reson Med 35: 771–80, 1996.PubMedCrossRefGoogle Scholar
  16. [16]
    LeGrice, I. J., B. H. Smaill, L. Z. Chai, S. G. Edgar, J. B. Gavin, and P. J. Hunter. Laminar structure of the heart: ventricular myocyte arrangement and connective tissue architecture in the dog. Am J Physiol 269: H571–82, 1995.PubMedGoogle Scholar
  17. [17]
    Lin, D. H. S., and F. C. P. Yin. A multiaxial constitutive law for mammalian left ventricular myocardium in steady-state barium contracture or tetanus. J Biomech Eng 120: 504–517, 1998.PubMedCrossRefGoogle Scholar
  18. [18]
    May-Newman, K., and A. D. McCulloch. Homogenization modeling for the mechanics of perfused myocardium. Progress in Biophysics and Molecular Biology 69: 463–482, 1998.PubMedCrossRefGoogle Scholar
  19. [19]
    Mazhari, R., and A. D. McCulloch. Integrative models for understanding the structural basis of regional mechanical dysfunction in ischemic myocardium. Ann Biomed Eng 28: 979–990, 2000.PubMedCrossRefGoogle Scholar
  20. [20]
    Mazhari, R., J. H. Omens, J. W. Covell, and A. D. McCulloch. Structural basis of regional dysfunction in acutely ischemic myocardium. Cardiovasc Res 47: 284–293, 2000.PubMedCrossRefGoogle Scholar
  21. [21]
    McCulloch, A. D., D. Sung, J. M. Wilson, R. S. Pavelec, and J. H. Omens. Flow-function relations during graded coronary occlusions in the dog: effects of transmural location and segment orientation. Cardiovasc Res 37, 1998.Google Scholar
  22. [22]
    McInerney, T., and D. Terzopoulos. Deformable models in medical image analysis: a survey. Med Image Anal 1: 91–108., 1996.PubMedCrossRefGoogle Scholar
  23. [23]
    McVeigh, E. R., F. W. Prinzen, B. T. Wyman, J. E. Tsitlik, H. R. Halperin, and W. C. Hunter. Imaging asynchronous mechanical activation of the paced heart with tagged MRI. Magnetic Resonance in Medicine 39: 507–13, 1998.PubMedCrossRefGoogle Scholar
  24. [24]
    Moulton, M. J., L. L. Creswell, S. W. Downing, R. L. Actis, B. A. Szabo, and M. K. Pasque. Myocardial material property determination in the in-vivo heart using magnetic resonance imaging. Int J Card Imaging 12: 153–67, 1996.PubMedCrossRefGoogle Scholar
  25. [25]
    Muthupillai, R., and R. L. Ehman. Magnetic resonance elastography. Nat Med 2: 601–3., 1996.PubMedCrossRefGoogle Scholar
  26. [26]
    Nagel, E., M. Stuber, M. Lakatos, M. B. Scheidegger, P. Boesiger, and O. M. Hess. Cardiac rotation and relaxation after anterolateral myocardial infarction. Coron Artery Dis 11: 261–7., 2000.PubMedCrossRefGoogle Scholar
  27. [27]
    Nielsen, P. M. F., I. J. Le Grice, B. H. Smaill, and P. J. Hunter. Mathematical model of geometry and fibrous structure of the heart. Am J Physiol 260: H1365–H1378, 1991.PubMedGoogle Scholar
  28. [28]
    O’Dell, W., W. Hunter, E. McVeigh, and A. McCulloch. Determination of material properties for the passively filling canine left ventricle. Ann Biomed Eng 25: S-27, 1997.Google Scholar
  29. [29]
    O’Dell, W. G., C. C. Moore, W. C. Hunter, E. A. Zerhouni, and E. R. McVeigh. Displacement field fitting approach to calculate 3-D deformations from parallel-tagged MR images. Radiology 195: 829–835, 1995.PubMedGoogle Scholar
  30. [30]
    Omens, J. H., and Y. C. Fung. Residual strain in rat left ventricle. Circ Res 66: 37–45, 1990.PubMedGoogle Scholar
  31. [31]
    Omens, J. H., K. D. May, and A. D. McCulloch. Transmural distribution of three-dimensional strain in isolated arrested canine left ventricle. Am J Physiol 261: H918–H928, 1991.PubMedGoogle Scholar
  32. [32]
    Reese, T. G., V. J. Wedeen, and R. M. Weisskoff. Measuring diffusion in the presence of material strain. J Magn Reson B 112: 253–8, 1996.PubMedCrossRefGoogle Scholar
  33. [33]
    Scollan, D. F., A. Holmes, R. Winslow, and J. Forder. Histological validation of myocardial microstructure obtained from diffusion tensor magnetic resonance imaging. Am J Physiol 275: H2308–18, 1998.PubMedGoogle Scholar
  34. [34]
    Streeter, D. D., Jr, and D. L. Bassett. An engineering analysis of myocardial fiber orientation in pig’s left ventricle in systole. Anat Rec 155: 503–511, 1966.CrossRefGoogle Scholar
  35. [35]
    Tseng, W. Y., I G. Reese, R. M. Weisskoff, T. J. Brady, and V. J. Wedeen. Myocardial fiber shortening in humans: initial results of MR imaging. Radiology 216: 128–39., 2000.PubMedGoogle Scholar
  36. [36]
    Waldman, L. K. Multidimensional measurements of regional strains in the intact heart. In: Theory of Heart; Biomechanic, Biophysics, and Non-Linear Dynamics of Cardiac Function, edited by L. Glass, P. Hunter and A. D. Mc-Culloch. New York: Springer-Verlag, 1991, p. 145–174.Google Scholar
  37. [37]
    Waldman, L. K., D. Nossan, F. Villarreal, and J. W. Covell. Relation between transmural deformation and local myofiber direction in canine left ventricle. Circ Res 63: 550–562, 1988.PubMedGoogle Scholar
  38. [38]
    Wedeen, V. J., W.-Y I. Tseng, T. G. Reese, H. Kantor, and R. M. Weisskoff. Magnetic resonance imaging finds normal myocardial fiber shortening and reduced crossfiber shortening in hypertrophic cardiomyopathy. Circulation 98: 1–514, 1998.Google Scholar
  39. [39]
    Weis, S. M., J. L. Emery, D. Becker, D. J. McBride, J. H. Omens, and A. McCulloch. Myocardial mechanics and collagen structure in the osteogenesis imperfecta murine. Circulation Research 87: 663–669, 2000.PubMedGoogle Scholar
  40. [40]
    Yin, F. C. P. Applications of the finite-element method to ventricular mechanics. CRC Crit Rev Biomed Eng 12: 311–342, 1985.Google Scholar
  41. [41]
    Yin, F. C. P. Ventricular wall stress. Circ Res 49: 829–842, 1981.PubMedGoogle Scholar
  42. [42]
    Young, A. A. Model tags: direct three-dimensional tracking of heart wall motion from tagged magnetic resonance images. Med Image Anal 3: 361–72., 1999.PubMedCrossRefGoogle Scholar
  43. [43]
    Young, A. A., and L. Axel. Three-dimensional motion and deformation in the heart wall: estimation from spatial modulation of magnetization — a model-based approach. Radiology 185: 241–247, 1992.PubMedGoogle Scholar
  44. [44]
    Young, A. A., S. Dokos, K. A. Powell, B. Sturm, A. D. McCulloch, R. C. Starling, P. M. McCarthy, and R. D. White. Regional heterogeneity of function in nonischemic dilated cardiomyopathy. Cardiovasc Res 49: 308–318., 2001.PubMedCrossRefGoogle Scholar
  45. [45]
    Young, A. A., C. M. Kramer, V. A. Ferrari, L. Axel, and N. Reichek. Three-dimensional left ventricular deformation in hypertrophic cardiomyopathy. Circulation 90: 854–67, 1994.PubMedGoogle Scholar
  46. [46]
    Zhu, Y., M. Drangova, and N. J. Pelc. Estimation of deformation gradient and strain from cine- PC velocity data. IEEE Trans Med Imaging 16: 840–51., 1997.PubMedCrossRefGoogle Scholar

Copyright information

© Kluwer Academic Publishers 2001

Authors and Affiliations

  • Andrew D. McCulloch
    • 1
  1. 1.Department of Bioengineering and The Whitaker Institute of Biomedical EngineeringUniversity of California San DiegoLa JollaUSA

Personalised recommendations