Skip to main content

Quantum Solitons in Optical Fibres: Basic Requisites for Experimental Quantum Communication

  • Chapter
Quantum Information with Continuous Variables

Abstract

Continuous variable quantum entanglement emerges from nonlinear interactions of: fibre optical solitons in combination with some linear operation. We describe the detection and characterization of bright EPR-entanglement and QND-entanglement produced in this way and discuss the prospects of bright-beam-based quantum communication.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 229.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 299.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. E. Schrödinger, Naturwiss., 23, 807 (1935).

    Article  ADS  Google Scholar 

  2. A. Einstein, B. Podolsky, and N. Rosen, Phys. Rev. 47, 777 (1935).

    Article  ADS  MATH  Google Scholar 

  3. D. Bohm, Quantum Theory. Prentice Hall, Englewood Cliffs, NJ, 1951.

    Google Scholar 

  4. J. S. Bell, Physics 1, 195 (1964).

    Google Scholar 

  5. J. F. Clauser, M. A. Horne, A. Shimony, and R. A. Holt, Rev. Prog. Phys. 23, 880 (1969)

    Google Scholar 

  6. J. F. Clauser and A. Shimony, Rev. Prog. Phys. 41, 1881 (1978).

    Article  ADS  Google Scholar 

  7. A. Aspect, P. Grangier, and G. Roger, Phys. Rev. Lett. 47, 460 (1981)

    Article  ADS  Google Scholar 

  8. A. Aspect, J. Dalibard, and G. Roger, Phys. Rev. Lett. 49, 1804 (1982).

    Article  MathSciNet  ADS  Google Scholar 

  9. C. H. Bennett, G. Brassard, C. Crepeau, R. Jozsa, A. Peres, and W. K. Wootters, Phys. Rev. Lett. 70, 1895 (1993)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  10. C. H. Benett, F. Bessette, G. Brassard, L. Salvail, and J. Smolin, J. Cryptology 5, 3 (1992).

    Article  Google Scholar 

  11. For a review see W. Tittel, G. Ribordy, and N. Gisin, Physics World, 41 (March 1998); N. Gisin, G. Ribordy, W. Tittel, and H. Zbinden, Rev. Mod. Phys. 74, 145–195 (2002).

    Article  ADS  Google Scholar 

  12. D. Bouwmeester, A. Ekert, A. Zeilinger (Eds.), Physics of Quantum Information. Springer, Berlin, 2000.

    MATH  Google Scholar 

  13. Z. Y. Ou, S. F. Pereira, H. J. Kimble, K. C. Peng, Phys. Rev. Lett. 68, 3663 (1992).

    Article  ADS  Google Scholar 

  14. Ch. Silberhorn, P. K. Lam, O. Weiß, F. König, N. Korolkova, and G. Leuchs, Phys. Rev. Lett. 86, 4267 (2001) and quant-ph/0103002.

    Article  ADS  Google Scholar 

  15. Y. Zhang, H. Wang, X. Li, J. Jing, C. Xie, and K. Peng, Phys. Rev. A 62, 023813 (2000).

    Article  ADS  Google Scholar 

  16. K. Bencheikh, J. A. Levenson, Ph. Grangier, O. Lopez, Phys. Rev. Lett. 75, 3422 (1995).

    Article  ADS  Google Scholar 

  17. F. König, B. Buchler, T. Rechtenwald, G. Leuchs, and A. Sizmann, “Soliton back-action evading measurement using spectral filtering”, Phys. Rev. A, submitted; F. König, T. Rechtenwald, M. A. Zielonka, R. Steidl, G. Leuchs, and A. Sizmann, “Quantum-nondemolition measurement using spectral correlations between fibre-optical pulses.” Conference on Lasers and Electro-Optics/ Quantum Electronics and Laser Science Conference CLEO/QELS’2000, San Fransisco, California, May 7–12, 2000, Technical digest, QThI28, p. 206.

    Google Scholar 

  18. F. König, M. A. Zielonka, and A. Sizmann, “Transient photon-number correlations of interacting solitons”, Phys. Rev. A 66, in print (2002)

    Google Scholar 

  19. A. Sizmann, F. König, M. A. Zielonka, R. Steidl, and T. Rechtenwald, “Quantum correlations of colliding solitons”, in Massive WDM and TDM Soliton Transmission Systems (A ROSC Symposium). A. Hasegawa (Ed.), Kluwer Academic Publishers, Dodrecht 2000, p. 289–298.

    Google Scholar 

  20. A. Kuhn, M. Hennrich, T. Bondo, and G. Rempe, Appl Phys., 69, 373 (1999)

    Article  Google Scholar 

  21. M. Hennrich, T. Legero, A. Kuhn, and G. Rempe, Phys. Rev. Lett. 85, 4872 (2000).

    Article  ADS  Google Scholar 

  22. C. K. Law and H. J. Kimble, J. Mod. Opt. 44, 2067 (1997).

    ADS  Google Scholar 

  23. B. Huttner and J. Brendel, “Photon-counting techniques for fiber measurements”, Lightwave, August 2000, pp. 112-120.

    Google Scholar 

  24. A. Karlsson, M. Bourennane, G. Ribordy, H. Zbinden, J. Bendel, J. Rarity, and P. Tapster, “A single-photon counter for log-haul telecom”, IEEE Circuits & Devices, November 1999, p. 34.

    Google Scholar 

  25. S. Lloyd and S. L. Braunstein, Phys. Rev. Lett. 82, 1784 (1999).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  26. U. Leonhardt, Measuring the quantum state of light. Cambridge University Press, 1997.

    Google Scholar 

  27. A. Furusawa, J. L. Sørensen, S. L. Braunstein, C. A. Fuchs, H. J. Kimble, and E. S. Polzik, Science 283, 706 (1998).

    Article  ADS  Google Scholar 

  28. G. Leuchs, T. C. Ralph, C. Silberhorn, and N. Korolkova, J. Mod. Opt. 46, 1927 (1999)

    Article  ADS  Google Scholar 

  29. G. Leuchs and N. Korolkova, “Entangling fiber solitons: Quantum noise engineering for interferometry and communication”, Optics & Photonic News, February 2002, p. 64-69.

    Google Scholar 

  30. M. D. Reid, and P.D. Drummond, Phys. Rev. Lett. 60, 2731 (1988)

    Article  ADS  Google Scholar 

  31. M. D. Reid, Phys. Rev. A 40, 913 (1989)

    ADS  Google Scholar 

  32. M. D. Reid, The Einstein-Podolsky-Rosen Paradox and entaglement 1: Signatures of EPR correlations for continuous variables, quant-ph/0112038 (2001).

    Google Scholar 

  33. H. A. Haus, K. Watanabe, Y. Yamamoto, J. Opt. Soc. Am. B6, 113 (1989).

    Google Scholar 

  34. S.R. Friberg, S. Machida, and Y Yamamoto, Phys. Rev. Lett. 69, 3165 (1992)

    Article  ADS  Google Scholar 

  35. S. R. Friberg, S. Machida, M. J. Werner, A. Levanon, and T. Mukai, Phys. Rev. Lett. 77, 3775 (1996).

    Article  ADS  Google Scholar 

  36. D. B. Horoshko and S. Ya. Kilin, Phys. Rev. A 61, 032304 (2000).

    ADS  Google Scholar 

  37. M. J. Holland, M.J. Collett, D. F. Walls, and M. D. Levenson, Phys. Rev. A 42, 2995 (1990)

    Article  ADS  Google Scholar 

  38. J.-R Poizat, J.-F. Roch, and P. Grangier, Ann. Phys. Fr. 19,265 (1994).

    Article  ADS  Google Scholar 

  39. V. B. Braginsky, Y I. Vorontsov and K. S. Thome, Science 209, 547 (1980).

    Article  ADS  Google Scholar 

  40. R. F. Werner, Phys. Rev. A 40, 4277 (1989).

    Article  ADS  Google Scholar 

  41. R. Simon, Phys. Rev. Lett. 84, 2726 (2000).

    Article  ADS  Google Scholar 

  42. L.-M. Duan, G. Giedke, J. I. Cirac, and P. Zoller, Phys. Rev. Lett. 84, 2722 (2000).

    Article  ADS  Google Scholar 

  43. D. F Walls, G. J. Milburn, Quantum Optics. Springer, Berlin, 1995.

    Google Scholar 

  44. R. F Werner and M. M. Wolf, Phys. Rev. Lett. 86, 3658 (2001).

    Article  ADS  Google Scholar 

  45. G. Giedke, B. Kraus, M. Lewenstein, and J. I. Cirac, Phys. Rev. Lett. 87, 167904 (2001)

    Article  ADS  Google Scholar 

  46. G. Giedke, L.-M. Duan, J. I. Cirac, and P. Zoller, Quant. Inf. Comp. 1, 79 (2001)

    MathSciNet  MATH  Google Scholar 

  47. G. Giedke and J. I. Cirac, “The characterization of Gaussian operations and Distillation of Gaussian States”, quant-ph/0204085.

    Google Scholar 

  48. S. Mancini, V. Giovannetti, D. Vitali, and P. Tombesi, Entangling macroscopic oscillators exploiting radiation pressure, quant-ph/0108044.

    Google Scholar 

  49. R. Bruckmeier, H. Hansen, S. Schiller, and J. Mlynek, Phys. Rev. Lett. 79, 43 (1997).

    Article  ADS  Google Scholar 

  50. S. Schmitt, J. Ficker, M. Wolff, F. König, A. Sizmann, and G. Leuchs, Phys. Rev. Lett. 81, 2446 (1998).

    Article  ADS  Google Scholar 

  51. D. Krylov, and K. Bergman, Optics Lett. 23,1390 (1998).

    Article  ADS  Google Scholar 

  52. M. J. Werner, Phys. Rev. Lett. 81, 4232 (1998).

    Article  ADS  Google Scholar 

  53. N. Korolkova, G. Leuchs, S. Schmitt, C. Silberhorn, A. Sizmann, M. Stratmann, O. Weiß, and H. A. Bachor, Nonlinear Optics, 24, 223 (2000).

    Google Scholar 

  54. M. Kitagawa, and Y. Yamamoto, Phys. Rev. A 34, 3974 (1986).

    ADS  Google Scholar 

  55. A. Sizmann and G. Leuchs, in: E. Wolf (ed.), Progress in Optics XXXIV. Elsevier Science Publishers B. V., Amsterdam, 1999, p. 373.

    Google Scholar 

  56. L.-M. Duan, G. Giedke, J. I. Cirac, and P. Zoller, Phys. Rev. Lett. 84, 4002 (2000).

    Article  ADS  Google Scholar 

  57. N. Gisin, G. Ribordy, W. Tittel, and H. Zbinden, Rev. Mod. Phys. 74, 145 (2002)

    Article  ADS  Google Scholar 

  58. N. Lütkenhaus, Phys. Rev. A 61,052304 (2000)

    ADS  Google Scholar 

  59. G. Brassard, N. Lütkenhaus, T. Mor, and B. C. Sanders, Phys. Rev. Lett. 85, 1330 (2000).

    Article  ADS  Google Scholar 

  60. J. A. Levenson, I. Abram, T. Rivera, P. Fayolle, J. C. Garreau, and P. Grangier, Phys. Rev. Lett. 70, 267 (1993)

    Article  ADS  Google Scholar 

  61. J. Ph. Poizat and P. Grangier, Phys. Rev. Lett. 70, 271 (1993)

    Article  ADS  Google Scholar 

  62. E. Goobar, A. Karlsson, and G. Björk, Phys. Rev. Lett. 71, 2002 (1993).

    Article  ADS  Google Scholar 

  63. Ph. Grangier, International Quantum Electronics Conference IQEC’ 2000, Nice, September 10–15, 2000, Tutorial talk.

    Google Scholar 

  64. M. Ozawa, Phys. Rev. Lett. 80, 631 (1998).

    Article  ADS  Google Scholar 

  65. V. B. Braginsky and Y I. Vorontsov, Sov. Phys.-Usp. 17, 644 (1974).

    Article  ADS  Google Scholar 

  66. G. J. Milburn and D. F Walls, Phys. Rev. A 28, 2065 (1983).

    ADS  Google Scholar 

  67. N. Imoto, H. A. Haus, and Y Yamamoto, Phys. Rev. A 32, 2287 (1985).

    ADS  Google Scholar 

  68. B. Yurke, J. Opt. Soc. Am. B2, 732 (1985).

    ADS  Google Scholar 

  69. C. M. Caves, Phys. Rev. Lett. 45, 75 (1980).

    Article  ADS  Google Scholar 

  70. W. G. Unruh, Phys. Rev. D19, 2888 (1979).

    ADS  Google Scholar 

  71. G. P. Agrawal, Nonlinear Fiber Optics. Academic Press, Inc., San Diego, California, 1995.

    Google Scholar 

  72. Y Lai and H. A. Haus, Phys. Rev. A40, 854 (1989).

    ADS  Google Scholar 

  73. P. D. Drummond, R. M. Shelby, S. R. Friberg, and Y Yamomoto, Nature 365, 307 (1993).

    Article  ADS  Google Scholar 

  74. Ph. Grangier, J. A. Levenson, and J.-P. Poizat, Nature 396, 537 (1998).

    Article  ADS  Google Scholar 

  75. M. Kitagawa, N. Imoto, and Y Yamamoto, Phys. Rev. A35, 5270 (1987).

    ADS  Google Scholar 

  76. H. A. Haus and Y. Lai, J. Opt. Soc. Am. B 7, 386 (1990).

    ADS  Google Scholar 

  77. P. Carruthers and M. Nieto, Phys. Rev. Lett. 14, 387 (1965).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  78. W. Vogel and D.-G. Welsch, Lectures on Quantum Optics. Akademie Verlag, Berlin, 1994.

    Google Scholar 

  79. V. E. Zakharov and A. B. Shabat, Zh. Eksp. Teor. Fiz. 61, 118 (1971), [Sov. Phys. JETP 34, 62 (1972)].

    Google Scholar 

  80. M. D. Levenson, R. M. Shelby, M. Reid, and D. F. Walls, Y. Yamamoto, Phys. Rev. Lett. 57, 2473 (1986).

    Article  ADS  Google Scholar 

  81. H. A. Bachor, M. S. Levenson, D. F Walls, S. H. Perlmutter, and R. M. Shelby, Phys. Rev. A 38, 180 (1988).

    ADS  Google Scholar 

  82. S. R. Friberg, T. Mukai, and S. Machida, Phys. Rev. Lett. 84, 59 (2000).

    Article  ADS  Google Scholar 

  83. M. D. Levenson and R. M. Shelby, J. Mod. Opt. 34, 775 (1987).

    Article  ADS  Google Scholar 

  84. J.-F. Roch, K. Vigneron, P. Grelu, A. Sinatra, J.-P. Poizat, and Ph. Grangier, Phys. Rev. Lett. 78, 634 (1997).

    Article  ADS  Google Scholar 

  85. B. Buchler, P. K. Lam, H. A. Bachor, U. Anderson and T. C. Ralph, Phys. Rev. A65, 011803(R).

    Google Scholar 

  86. N. Imoto and S. Saito, Phys. Rev. A 39, 675 (1989).

    ADS  Google Scholar 

  87. Ph. Grangier, J. M. Courty, and S. Reynaud, Opt. Commun. 89, 99 (1992).

    Article  ADS  Google Scholar 

  88. P. D. Drummond, J. Breslin, and R. M. Shelby, Phys. Rev. Lett. 73, 2837 (1994).

    Article  ADS  Google Scholar 

  89. J.M. Courty, S. Spälter, F. König, A. Sizmann, and G. Leuchs, Phys. Rev. A 58, 1501 (1998).

    Article  ADS  Google Scholar 

  90. Y. Sakai, R. J. Hawkins, and S. R. Friberg, Opt. Lett. 15, 239 (1990).

    Article  ADS  Google Scholar 

  91. R. M. Shelby, M. D. Levenson, and P. W. Bayer, Phys. Rev. Lett. 54, 939 (1985)

    Article  ADS  Google Scholar 

  92. R. M. Shelby, M. D. Levenson, and P. W. Bayer, Phys. Rev. B 31, 5244 (1985).

    ADS  Google Scholar 

  93. P. D. Townsend and A. J. Poustie, R. M. Shelby, Opt. Lett. 20, 37 (1995).

    Article  ADS  Google Scholar 

  94. S. S. Yu and Y Lai, “Quantum non-demolition measurements of the photon number with a fiber ring: enhancement of the correlation through multiple soliton collisions”, in International Quantum Electronics Conference Technical digest, OSA Technical Digest Series, Sidney, Australia, 1996, V. 20, p. 246.

    Google Scholar 

  95. S. Spälter, P. van Loock, A. Sizmann, and G. Leuchs, Appl. Phys. B 64, 213 (1997).

    ADS  Google Scholar 

  96. S. J. Carter, P. D. Drummond, M. D. Reid, and R. M. Shelby, Phys. Rev. Lett. 58, 1841 (1987).

    Article  ADS  Google Scholar 

  97. M. Rosenbluh and R. M. Shelby, Phys. Rev. Lett. 66, 153 (1991).

    Article  ADS  Google Scholar 

  98. S. R. Friberg, S. Machida, M. J. Werner, A. Levenson, and T. Mukai, Phys. Rev. Lett. 77, 3775 (1996).

    Article  ADS  Google Scholar 

  99. S. Spälter, N. Korolkova, F. König, A. Sizmann, and G. Leuchs, Phys. Rev. Lett. 81, 786 (1998).

    Article  ADS  Google Scholar 

  100. M. Werner and S. Friberg, Phys. Rev. Lett. 79, 4143 (1997).

    Article  ADS  Google Scholar 

  101. E. Schmidt, L. Knöll, D.-G. Welsch, M. Zielonka, F. König, and A. Sizmann, Phys. Rev. Lett. 85, 3801 (2000).

    Article  ADS  Google Scholar 

  102. S. Spälter, M. Burk, U. Strößner, A. Sizmann, and G. Leuchs, Optics Express 2, 77 (1998).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Kluwer Academic Publishers

About this chapter

Cite this chapter

Leuchs, G., Silberhorn, C., König, F., Lam, P.K., Sizmann, A., Korolkova, N. (2003). Quantum Solitons in Optical Fibres: Basic Requisites for Experimental Quantum Communication. In: Braunstein, S.L., Pati, A.K. (eds) Quantum Information with Continuous Variables. Springer, Dordrecht. https://doi.org/10.1007/978-94-015-1258-9_24

Download citation

  • DOI: https://doi.org/10.1007/978-94-015-1258-9_24

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-6255-0

  • Online ISBN: 978-94-015-1258-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics