Skip to main content

Abstract

This paper provides necessary and sufficient conditions for constructing a universal quantum computer over continuous variables. As an example, it is shown how a universal quantum computer for the amplitudes of the electromagnetic field might be constructed using simple linear devices such as beam splitters and phase shifters, together with squeezers and nonlinear devices such as Kerr-effect fibers and atoms in optical cavities. Such a device could in principle perform “floating point” computations. Problems of noise, finite precision, and error correction are discussed.

S. Lloyd and S. L. Braunstein, Physical Review Letters 82, 1784–1787 (1999).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 229.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 299.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. D. DiVincenzo, Science 270, 255 (1995).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  2. S. Lloyd, Sci. Am. 273, 140 (1995).

    Article  Google Scholar 

  3. S. Lloyd and J. J.-E. Slotine, Phys. Rev. Lett. 80, 4088 (1998).

    Article  ADS  Google Scholar 

  4. S. L. Braunstein, Phys. Rev. Lett. 80, 4084 (1998).

    Article  ADS  Google Scholar 

  5. S. L. Braunstein, Nature (London) 394, 47 (1998).

    Article  ADS  Google Scholar 

  6. S. L. Braunstein and H. J. Kimble, Phys. Rev. Lett. 80, 869 (1998).

    Article  ADS  Google Scholar 

  7. A. Furusawa, et al, Science 282, 706 (1998).

    Article  ADS  Google Scholar 

  8. This definition of quantum computation corresponds to the normal “circuit” definition of quantum computation as in, e.g., D. Deutsch, Proc. R. Soc. London A, 425, 73 (1989)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  9. A. C.-C. Yao, in Proceedings of the 36th Annual Symposium on Foundations of Computer Science, edited by S. Goldwasser, (IEEE Computer Society, Los Alamitos, CA, 1995), pp. 352–361. The works of

    Google Scholar 

  10. M. Reck et al., Phys. Rev. Lett. 73, 58 (1994), and

    Article  ADS  Google Scholar 

  11. N. J. Cerf, C. Adami, and P. G. Kwiat, Phys. Rev. A 57, R1477 (1998), showing how to perform arbitrary unitary operators using only linear devices such as beam splitters, though of considerable interest and potential practical importance, does not constitute quantum computation by the usual definition. Reck et al. and Cerf et al. propose performing arbitrary unitary operations on N variables not by acting on the variables themselves but by expanding the information in the variables into an interferometer with O(2N) arms and acting in this exponentially larger space. Local operations on the original variables correspond to highly nonlocal operations in this “unary” representation: To flip a single bit requires one to act on half [O(2N−1)] of the arms of the interferometer. Actually to perform quantum computation on qubits using an interferometer requires nonlinear operations as detailed in

    Article  MathSciNet  ADS  Google Scholar 

  12. N. Yang, K. Young (World Scientific, Singapore, 1988), pp. 779–799

    Google Scholar 

  13. G. J. Milburn, Phys. Rev. Lett. 62 2124 (1989).

    Article  ADS  Google Scholar 

  14. G. M. Huang, T. J. Tarn, J. W. Clark, J. Math. Phys. (N.Y) 24, 2608–2618 (1983.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  15. Differential Geometric Control Theory, edited by R. W. Brockett, R. S. Millman and H. J. Sussman, (Birkhauser, Boston, 1983); Nonholonomic Motion Planning, edited by Z. Li and J. F. Canney (Kluwer Academic, Boston, 1993).

    Google Scholar 

  16. V. Ramakrishna, M. V. Salapaka, M. Dahleh, H. Rabitz and A. Peirce, Phys. Rev. A 51, 960–966 (1995).

    Article  ADS  Google Scholar 

  17. S. Lloyd, Phys. Rev. Lett. 75, 346–349 (1995).

    Article  ADS  Google Scholar 

  18. D. Deutsch, A. Barenco and A. Ekert, Proc. R. Soc. London A 449, 669–677 (1995).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  19. S. Lloyd, Science 273, 1073 (1996).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  20. L. Blum, M. Shub and S. Smale, Bull. Am. Math. Soc. 21, 1–46 (1989).

    Article  MathSciNet  MATH  Google Scholar 

  21. L. A. Wu et al., Phys. Rev. Lett. 57, 2520 (1986).

    Article  ADS  Google Scholar 

  22. Q. A. Turchette, et al, Phys. Rev. Lett. 75, 4710–4713 (1995).

    Article  MathSciNet  ADS  Google Scholar 

  23. R. Landauer, Nature (London) 335, 779–784 (1988).

    Article  ADS  Google Scholar 

  24. R. Landauer, Phys. Lett. A 217, 188–193 (1996).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  25. R. Landauer, Phil. Trans. R. Soc. London A 335, 367–376 (1995).

    Article  MathSciNet  ADS  Google Scholar 

  26. P. Shor, Proceedings of the 37th Annual Symposium on the Foundations of Computer Science (IEEE Computer Society Press, Los Alamitos, 1996), pp. 56–65.

    Google Scholar 

  27. D. P. DiVincenzo and P. W. Shor, Phys. Rev. Lett. 77, 3260–3263 (1996).

    Article  ADS  Google Scholar 

  28. R. Laflamme, M. Knill and W.H. Zurek, Science 279, 342 (1998)

    Article  ADS  Google Scholar 

  29. D. Aharanov and Ben-Or, quant-ph; J. Preskill, Proc. R. Soc. London A 454, 385 (1998).

    Article  Google Scholar 

  30. C. H. Bennett and G. Brassard, in Proceedings of the IEEE International Conference on Computers, Systems, and Signal Processing, Bangalore, India, (IEEE Press, New York, 1984), pp. 175–179.

    Google Scholar 

  31. A. K. Ekert, et al, Phys. Rev. Lett. 69, 1293 (1992)

    Article  ADS  Google Scholar 

  32. P. D. Townsend, J. G. Rarity and P. R. Tapster, Electronics Letters 29, 1291 (1993)

    Article  Google Scholar 

  33. R. J. Hughes, et al, in Advances in Cryptology: Proceedings of Crypto 96, (Springer-Verlag, New York, 1997), pp. 329–343

    Google Scholar 

  34. A. Muller et al. Appl. Phys. Lett. 70, 793 (1997).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 American Physical Society

About this chapter

Cite this chapter

Lloyd, S., Braunstein, S.L. (1999). Quantum Computation Over Continuous Variables. In: Braunstein, S.L., Pati, A.K. (eds) Quantum Information with Continuous Variables. Springer, Dordrecht. https://doi.org/10.1007/978-94-015-1258-9_2

Download citation

  • DOI: https://doi.org/10.1007/978-94-015-1258-9_2

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-6255-0

  • Online ISBN: 978-94-015-1258-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics