Skip to main content

Atomic Continuous Variable Processing and Light-Atoms Quantum Interface

  • Chapter
Quantum Information with Continuous Variables

Abstract

In this Chapter methods for generation of squeezed and entangled states of atomic ensembles are described along with the protocols for quantum state exchange between light and atomic samples. Realization of these protocols provides the means to store/retrieve quantum information transmitted by light in/from atomic samples, which can be used for processing of this information. Polarization variables (Stokes parameters) of a multi-photon light pulse and spin components of a multi-atom atomic ensemble are the continuous variables employed in these protocols. Two different methods for a quantum state exchange are analyzed: (a) mapping of non-classical states of light onto atomic spins via complete absorption of resonant light, (b) teleportation-like transfer of a quantum state via a QND-type interaction between off-resonant light and atoms.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 229.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 299.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. A. S. Parkins and H. J. Kimble, J. Opt. B 1, 496 (1999)

    Article  ADS  Google Scholar 

  2. S. Bose, P. L. Knight, M. B. Plenio, and V. Vedral, Phys. Rev. Lett. 83, 5158 (1999).

    Article  ADS  Google Scholar 

  3. A. Kuzmich, K. Mølmer, and E. S. Polzik, Phys. Rev. Lett. 79, 4782 (1997).

    Article  ADS  Google Scholar 

  4. A. E. Kozhekin, K. Mølmer, E. S. Polzik, Phys. Rev. A 62, 033809 (2000).

    Article  ADS  Google Scholar 

  5. E. S. Polzik, Phys. Rev. A 59, 4202 (1999).

    Article  ADS  Google Scholar 

  6. J. Hald, J. L. Sørensen, C. Schon, and E. S. Polzik, Phys. Rev. Lett. 83, 1319 (1999).

    Article  ADS  Google Scholar 

  7. A. Kuzmich, L. Mandel, and N. P. Bigelow, Phys. Rev. Lett. 85, 1594 (2000).

    Article  ADS  Google Scholar 

  8. Z. Y. Ou, S. F. Pereira, J. H. Kimble, and K. C. Peng, Phys. Rev. Lett. 68, 3663 (1992).

    Article  ADS  Google Scholar 

  9. Ch. Silberhorn, P. K. Lam, O. Weiss, F. Konig, N. Korolkova, and G. Leuchs, Phys. Rev. Lett. 86, 4267 (2001).

    Article  ADS  Google Scholar 

  10. C. Schori, J. L. Sørensen, E. S. Polzik, quant-ph/0205015.

    Google Scholar 

  11. B. Julsgaard, A. Kozhekin, and E. S. Polzik, Nature 413, 400 (2001).

    Article  ADS  Google Scholar 

  12. A. Kuzmich and E. S. Polzik, Phys. Rev. Lett. 85, 5639 (2000).

    Article  ADS  Google Scholar 

  13. Lu-Ming Duan, J.I. Cirac, P. Zoller, and E. S. Polzik, Phys. Rev. Lett. 85, 5643 (2000).

    Article  ADS  Google Scholar 

  14. F. T. Arecchi, E. Courtens, R. Gilmore, and H. Thomas, Phys. Rev. A 6, 2211 (1972).

    Article  ADS  Google Scholar 

  15. I. Cirac, unpublished.

    Google Scholar 

  16. M. Kitagawa and M. Ueda, Phys. Rev. Lett. 67, 1852 (1991); Phys. Rev. A 47, 5138(1993).

    Article  ADS  Google Scholar 

  17. D. J. Wineland, J. J. Bollinger, W. M. Itano, and F. L. Moore, Phys. Rev. A 46, R6797 (1992)

    Article  ADS  Google Scholar 

  18. D. J. Wineland, J. J. Bollinger, W. M. Itano, and D. J. Heinzen, Phys. Rev. A 50, 67 (1994).

    Article  ADS  Google Scholar 

  19. G. S. Agarwal and R. R. Puri, Phys. Rev. A, 41, 3782

    Google Scholar 

  20. L.-M. Duan, G. Giedke, J. I. Cirac, P. Zoller, Phys. Rev. Lett. 84, 2722 (2000).

    Article  ADS  Google Scholar 

  21. J. Hald and E. S. Polzik. Special Issue: Quantum Coherence and Entanglement. Journal of Optics B: Quantum and Semiclassical Optics, 3, S83 (2001).

    Article  ADS  Google Scholar 

  22. F. Laloe, M. Leduc, and P. Miguzzi, J. Phys. 30, 277 (1969).

    Article  Google Scholar 

  23. J. L. Sørensen, J. Hald, and E. S. Polzik, Phys. Rev. Lett. 80, 3487 (1998).

    Article  ADS  Google Scholar 

  24. W. Happer, Rev. Mod. Phys. 44, 169 (1972).

    Article  ADS  Google Scholar 

  25. W. Happer and B. S. Mathur, Phys. Rev. Lett. 18, 577 (1967).

    Article  ADS  Google Scholar 

  26. S. L. Braunstein, Nature, 394, 47 (1998)

    Article  ADS  Google Scholar 

  27. S. Lloyd and S. L. Braunstein, Phys. Rev. Lett. 82, 1784 (1999).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  28. A. Kuzmich, N. P. Bigelow, and L. Mandel, Europhys. Lett. A 42, 481 (1998).

    Article  ADS  Google Scholar 

  29. K. Mølmer, Eur. Phys. J. D 5, 301 (1999)

    Article  ADS  Google Scholar 

  30. Y. Takahashi, K. Honda, N. Tanaka, K. Toyoda, K. Ishikava, and T. Yabuzaki, Phys. Rev. A 60, 4974 (1999).

    Article  ADS  Google Scholar 

  31. J.-Ph. Poizat, J.-F. Roch, and P. Grangier, Ann. Phys. Fr. 19, 265 (1994).

    Article  ADS  Google Scholar 

  32. C. H. Bennett, G. Brassard, C. Crepeau, R. Jozsa, A. Peres, and W. K. Wooters, Phys. Rev. Lett. 70, 1895 (1993).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  33. A. Furusawa, J. L. Sørensen, S. L. Braunstein, C. A. Fuchs, H. J. Kimble, and E. S. Polzik, Science 282, 706 (1998).

    Article  ADS  Google Scholar 

  34. L. Vaidman and N. Yoran, Phys. Rev. A 59, 116 (1999).

    Article  ADS  Google Scholar 

  35. C. Schori, B. Julsgaard, J. L. Sørensen, and E. S. Polzik, quantph/0203023.

    Google Scholar 

  36. S. L. Braunstein, Phys. Rev. Lett. 80, 4084 (1998).

    Article  ADS  Google Scholar 

  37. P. van Loock and S. L. Braunstein, Phys. Rev. Lett. 84, 3482 (2000).

    Article  ADS  Google Scholar 

  38. C. Ahn, A. C. Doherty, and A. J. Landahl, quant-ph/0110111.

    Google Scholar 

  39. M. Brune, S. Haroche, J. M. Raimond, L. Davidovich, and N. Zagury, Phys. Rev. A 45, 5193 (1992).

    Article  ADS  Google Scholar 

  40. L. D. Landau and E. M. Lifshitz, Quantum mechanics: non-relativistic theory (Pergamon Press, New York, 1991).

    Google Scholar 

  41. W. Happer and B. S. Mathur, Phys. Rev. 163, 12 (1965).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Kluwer Academic Publishers

About this chapter

Cite this chapter

Kuzmich, A., Polzik, E.S. (2003). Atomic Continuous Variable Processing and Light-Atoms Quantum Interface. In: Braunstein, S.L., Pati, A.K. (eds) Quantum Information with Continuous Variables. Springer, Dordrecht. https://doi.org/10.1007/978-94-015-1258-9_18

Download citation

  • DOI: https://doi.org/10.1007/978-94-015-1258-9_18

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-6255-0

  • Online ISBN: 978-94-015-1258-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics