Skip to main content

Separability Criterion for Gaussian States

  • Chapter
Quantum Information with Continuous Variables
  • 1332 Accesses

Abstract

The PPT (positivity under partial transpose) criterion is studied in the context of separability of continuous variable bipartite states. The partial transpose operation admits, in the Wigner representation of quantum mechanics, a geometric interpretation as momentum reversl or mirror reflection in phase space. This recognition leads to uncertainty principles, stronger than the traditional ones, to be obeyed by all PPT (separable as well as bound entangled) states. In the special case of bipartite two-mode systems, the PPT crrterion turns out to be necessary and sufficient condition for separability, for all Gaussian states: a 1 + 1 syatem has no bound entangled Gaussian state. The symplectic group of linear canonical transformations and the representation of these transformations through (metaplectic) unitary Hilbert space operators play an important role in our ananysis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 229.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 299.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. L. Vaidman, Phys. Rev. A 49, 1473 (1994)

    Article  MathSciNet  ADS  Google Scholar 

  2. L. Vaidman and N. Yoran, Phys. Rev. A 59, 116 (1999).

    Article  ADS  Google Scholar 

  3. A. S. Parkins and H. J. Kimble, quant-ph/9904062; quant-ph/9907049; quant-ph/9909021.

    Google Scholar 

  4. S. L. Braunstein, Nature 394, 47 (1998); quant-ph/9904002

    Article  ADS  Google Scholar 

  5. S. Lloyd and S. L. Braunstein, Phys. Rev. Lett. 82, 1784 (1999).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  6. G. J. Milburn and S. L. Braunstein, quant-ph/9812018.

    Google Scholar 

  7. P. van Loock, S. L. Braunstein, and H. J. Kimble, quant-ph/9902030; P. van Loock and S. L. Braunstein, quant-ph/9906021; quant-ph/9906075.

    Google Scholar 

  8. S. L. Braunstein and H. J. Kimble, Phys. Rev. Lett. 88, 869 (1998).

    Article  ADS  Google Scholar 

  9. A. Furusawa et al., Science 282, 706 (1998).

    Article  ADS  Google Scholar 

  10. C. H. Bennett, Phys. Today 48, 24 (1995)

    Article  Google Scholar 

  11. D. P. DiVincenzo, Science 270, 255 (1995).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  12. A. Peres, Phys. Rev. Lett. 77, 1413 (1996).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  13. P. Horodecki, Phys. Lett. A 232, 333 (1997).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  14. R. Simon, Phys. Rev. Lett. 84, 2726 (2000).

    Article  ADS  Google Scholar 

  15. R.F. Werner and M.M. Wolf, Phys. Rev. Lett. 86, 3658 (2001).

    Article  ADS  Google Scholar 

  16. L. M. Duan, G. Giedke, J. I. Cirac, and P. Zoller, Phys. Rev. Lett. 84, 2722 (2000).

    Article  ADS  Google Scholar 

  17. L. M. Duan, G. Giedke, J. I. Cirac, and P. Zoller, Phys. Rev. Lett. 84, 4002 (2000).

    Article  ADS  Google Scholar 

  18. R. Simon, E. C. G. Sudarshan, and N. Mukunda, Phys. Rev. A 36, 3868 (1987).

    Article  MathSciNet  ADS  Google Scholar 

  19. R. Simon and N. Mukunda, in Symmetries in Science V, Ed. B. Gruber (Plenum, NY, 1993), p. 659–689.

    Google Scholar 

  20. R. Simon and N. Mukunda, Phys. Rev. Lett. 70, 880 (1993).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  21. E. P. Wigner, Phys. Rev. 40, 749 (1932)

    Article  ADS  MATH  Google Scholar 

  22. R. G. Littlejohn, Phys. Rep. 138, 193 (1986).

    Article  MathSciNet  ADS  Google Scholar 

  23. R. Hudson, Rep. Math. Phys. 6, 249 (1975).

    Article  MathSciNet  ADS  Google Scholar 

  24. R. Simon, E. C. G. Sudarshan, and N. Mukunda, Phys. Rev. A 37, 3028 (1988).

    Article  MathSciNet  ADS  Google Scholar 

  25. J. Williamson, Am. J. Math. 58, 141 (1936). See also

    Article  Google Scholar 

  26. V.I. Arnold, Mathematical Methods of Classical Mechanics (Springer-Verlag, NY, 1978), Appendix 6.

    MATH  Google Scholar 

  27. R. Simon, N. Mukunda, and B. Dutta, Phys. Rev. A 49, 1567 (1994).

    Article  MathSciNet  ADS  Google Scholar 

  28. G. Giedke, B. Kraus, M. Lewenstein, and J. I. Cirac, Phys. Rev. Lett. 84, 176904 (2001).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Kluwer Academic Publishers

About this chapter

Cite this chapter

Simon, R. (2003). Separability Criterion for Gaussian States. In: Braunstein, S.L., Pati, A.K. (eds) Quantum Information with Continuous Variables. Springer, Dordrecht. https://doi.org/10.1007/978-94-015-1258-9_14

Download citation

  • DOI: https://doi.org/10.1007/978-94-015-1258-9_14

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-6255-0

  • Online ISBN: 978-94-015-1258-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics