Skip to main content

Part of the book series: Encyclopaedia of Mathematics ((ENMA,volume 9))

  • 591 Accesses

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Zariski, O.: ‘The concept of a simple point of an abstract algebraic variety’, Trans. Amer. Math. Soc. 62 (1947), 1–52.

    MATH  MathSciNet  Google Scholar 

  2. Samuel, P.: Méthodes d’algèbre abstraite en géométrie algébrique, Springer, 1955.

    MATH  Google Scholar 

  3. Shafarevich, I.R.: Basic algebraic geometry, Springer, 1977 (translated from the Russian).

    MATH  Google Scholar 

  4. Hartshorne, R.: Algebraic geometry, Springer, 1977.

    MATH  Google Scholar 

  5. Zariski, O.: ‘Foundations of a general theory of birational correspondences’, Trans. Amer. Math. Soc. 53, no. 3 (1943), 490–542.

    MATH  MathSciNet  Google Scholar 

  6. Zariski, O.: ‘Theory and applications of holomorphic functions on algebraic varieties over arbitrary ground fields’, Mem. Amer. Math. Soc. 5 (1951), 1–90.

    MathSciNet  Google Scholar 

  7. Grothendieck, A.: ‘Eléments de géometrie algébrique. III. Etude cohomologique des faisceaux cohérents F’, Publ. Math. IHES 11 (1961).

    Google Scholar 

  8. Grothendieck, A.: ‘Eléments de géometrie algébrique. IV. Etude locale des schémas et des morphismes des schémas IV’, Publ. Math. IHES 32 (1967).

    Google Scholar 

  9. Hartshorne, R.: Algebraic geometry, Springer, 1977.

    MATH  Google Scholar 

  10. Zariski, O.: The connectedness theorem for birational transformations’, in R.H. Fox, et al. (ed.): Algebraic Geometry and Topology (Symp. in Honor of S. Lefschetz), Princeton Univ. Press, 1957, pp. 182–188.

    Google Scholar 

  11. Murre, J.P.: ‘On a connectedness theorem for a birational transformation at a simple point’, Amer. J. Math. 80 (1958), 3–15.

    MATH  MathSciNet  Google Scholar 

  12. Chow, W.-L.: ‘On the connectedness theorem in algebraic geometry’, Amer. J. Math. 83 (1959), 1033–1074.

    Google Scholar 

  13. Zariski, O.: ‘The compactness of the Riemann manifold of an abstract field of algebraic functions’, Bull. Amer. Math. Soc. 50, no. 10(1944), 683–691.

    MATH  MathSciNet  Google Scholar 

  14. Serre, J.P.: Fibre spaces and their applications, Moscow, 1958, pp. 372–450 (in Russian; translated from the French).

    Google Scholar 

  15. Hartshorne, R.: Algebraic geometry, Springer, 1977. AMS 1980 Subject Classification: 14-XX

    MATH  Google Scholar 

  16. Zassenhaus, H.: ‘Über Lie’schen Ringe mit Primzahlcharak-teristik’, Abh. Math. Sem. Univ. Hamburg 13 (1940), 1–100.

    Google Scholar 

  17. Suzuki, M.: ‘On the convergence of exponential operators -the Zassenhaus formula, BCH formula and systematic approximants’, Comm. Math. Phys. 57 (1977), 193–200.

    MATH  MathSciNet  Google Scholar 

  18. Magnus, W., Karrass, A. and Solitar, D.: Combinatorial group theory, Interscience, 1966.

    MATH  Google Scholar 

  19. Baues, H.J.: Commutator calculus and groups of homotopy classes, Cambridge Univ. Press, 1981.

    MATH  Google Scholar 

  20. Zassenhaus, H.: ‘Kennzeichnung endlicher linearer Gruppen als Permutationsgruppen’, Abh. Math. Sem. Univ. Hamburg 11 (1935), 17–40.

    MATH  Google Scholar 

  21. Gorenstein, D.: Finite groups, Harper & Row, 1968.

    MATH  Google Scholar 

  22. Huppert, B. and Blackburn, N.: Finite groups, 3, Springer, 1967.

    Google Scholar 

  23. Zermelo,E.: ‘Beweiss, dass jede Menge wohlgeordnet werden kann’, Math. Ann. 59 (1904), 514–516.

    MATH  MathSciNet  Google Scholar 

  24. Fraenkel, A. and Bar-Hillel, Y.: Foundations of set theory, North-Holland, 1958.

    MATH  Google Scholar 

  25. Moore, G.H.: Zermelo’s axiom of choice, Springer, 1982.

    MATH  Google Scholar 

  26. Rubin, J. and Rubin, H.: Equivalents of the axiom of choice, 1–2, North-Holland, 1963–1985.

    MATH  Google Scholar 

  27. Jacobson, N.: Basic algebra, 1, Freeman, 1974.

    MATH  Google Scholar 

  28. Aleksandrov, P.S. and Pasynkov, B.A.: Introduction to dimension theory, Moscow, 1973 (in Russian).

    Google Scholar 

  29. Hurewicz, W. and Wallman, H.: Dimension theory, Princeton Univ. Press, 1948.

    MATH  Google Scholar 

  30. Engelking, R.: General topology, Heldermann, 1989 (translated from the Polish).

    MATH  Google Scholar 

  31. Aleksandrov, P.S. and Pasynkov, B.A.: Introduction to dimension theory, Moscow, 1973 (in Russian).

    Google Scholar 

  32. Banaschewski, B.: ‘Projective covers in categories of topological spaces and topological algebras’, in J. Novák, et al. (ed.): General Topol. and its Relations to Modern Anal. and Alg. (Proc. Kanpur, 1968), Vol. 3, Academia, 1971, pp. 63–91.

    Google Scholar 

  33. Błaszczyk, A.: ‘Extremally disconnected resolutions of T 0 spaces’, Colloq. Math. 32 (1974), 57–68.

    MATH  MathSciNet  Google Scholar 

  34. Gleason, A.: ‘Projective topological spaces’, III. J. Math. 2 (1958), 482–489.

    MATH  MathSciNet  Google Scholar 

  35. Isbell, J.: ‘A note on complete closure algebras’, Math. Systems Theory 3 (1969), 310–312.

    MATH  MathSciNet  Google Scholar 

  36. Isbell, J.: ‘Graduation and dimension in locales’, in I.H. James and E.H. Kronheimer (eds.): Aspects of Topology: in Memory of Hugh Dowker, Lecture notes London Math. Soc., Vol. 93, Cambridge Univ. Press, 1985, pp. 195–210.

    Google Scholar 

  37. Johnstone, P.T.: The Gleason cover of a topos l’, J. Pure Appl.Alg. 19(1980), 171–192.

    MATH  MathSciNet  Google Scholar 

  38. Johnstone, P.T.: ‘The Gleason cover of a topos II’, J. Pure Appl. Alg. 22 (1981), 229–247.

    MATH  MathSciNet  Google Scholar 

  39. Ciesielski, K.: ‘L-space without any uncountable 0-dimensional subspace’, Fundam. Math. 125 (1985), 231–235.

    MATH  MathSciNet  Google Scholar 

  40. Engelking, R.: General topology, Heldermann, 1989 (translated from the Polish).

    MATH  Google Scholar 

  41. Engelking, R.: Dimension theory, North-Holland, 1978 (translated from the Polish).

    MATH  Google Scholar 

  42. Hurewicz, W. and Wallman, H.: Dimension theory, Princeton Univ. Press, 1941.

    Google Scholar 

  43. Nyikos, P.: ‘A survey of zero-dimensional spaces’, in S.P. Franklin, et al. (ed.): Topology (Proc. 9th Annual Spring Conf. Memphis, 1975), M. Dekker, 1976, pp. 87–114.

    Google Scholar 

  44. Johnstone,P.T.: Stone spaces, Cambridge Univ. Press, 1983.

    Google Scholar 

  45. Borel, E.: ‘Les probabilités dénombrables et leurs applications arithmétique’, Rend. Circ. Mat. Palermo (2) 27 (1909), 247–271.

    MATH  Google Scholar 

  46. Kolmogorov, A.N.: ‘Über die Summen durch den Zufall bestimmter unabhängiger Grössen’, Math. Ann. 99 (1928), 309–319.

    MathSciNet  Google Scholar 

  47. Steinhaus, H.: ‘Über die Wahrscheinlichkeit dafür dass der Konvergenzkreis einer Potenzreihe ihre natürliche Grenze ist’, Math. Z. 31 (1929), 408–416.

    MATH  MathSciNet  Google Scholar 

  48. Jessen, A. B.: ‘The theory of integration in a space of an infinite number of dimensions’, Acta Math. 63 (1934), 249–323.

    MathSciNet  Google Scholar 

  49. Kolmogorov, A.N.: Foundations of the theory of probability, Chelsea, reprint, 1950 (translated from the Russian).

    Google Scholar 

  50. Levy, P.: Theorie de l’addition des variables aléatoires, Gauthier-Villars, 1937.

    Google Scholar 

  51. Doob, J.L.: Stochastic processes, Chapman and Hall, 1953.

    MATH  Google Scholar 

  52. Dobrushin, R.L.: ‘Properties of sample functions of a stationary Gaussian process’, Theor. Probab. Appl. 5, no. 1 (1960), 117–120. (Teor. Veroyatnost. i ee Primenen. 5, no. 1 (1960), 132–134)

    MathSciNet  Google Scholar 

  53. Hewitt, E. and Savage, L.J.: ‘Symmetric measures on Cartesian products’, Trans. Amer. Math. Soc. 80 (1955), 470–501.

    MATH  MathSciNet  Google Scholar 

  54. Loève, M.: Probability theory, 1–2, Springer, 1978.

    MATH  Google Scholar 

  55. Rozenfel’d, B.A.: Multi-dimensional spaces, Moscow, 1966 (in Russian).

    Google Scholar 

  56. Staudt, K.G.C. von: Beiträge zur Geometrie der Lage, Korn, Nürnberg, 1847, pp. 60–69; 190–196.

    Google Scholar 

  57. Coxeter, H.S.M.: Non-euclidean geometry, Univ. Toronto Press, 1965, pp. 65–70.

    Google Scholar 

  58. Pedoe, D.: Geometry: a comprehensive course, Dover, reprint, 1988, §85.5.

    MATH  Google Scholar 

  59. Euler, L.: Einleitung in die Analysis des Unendlichen, Springer, 1983 (translated from the Latin).

    MATH  Google Scholar 

  60. Chebyshev, P.L.: Selected mathematical works, Moscow-Leningrad, 1946 (in Russian).

    Google Scholar 

  61. Riemann, B.: Collected works, Dover, reprint, 1953.

    Google Scholar 

  62. Titchmarsh, E.C.: The theory of the Riemann zeta-function, Clarendon Press, 1986. (Rev. ed.).

    MATH  Google Scholar 

  63. Lavrik, A.F.: ‘Approximate functional equations for Dirichlet functions’, Math. USSR Izv. 2 (1968), 129–179. (Izv. Akad. Nauk SSSR Ser. Mat. 32, no. 1 (1968), 134–185)

    MathSciNet  Google Scholar 

  64. Vinogradov, I.M.: The method of trigonometric sums in the theory of numbers, Interscience, 1954 (translated from the Russian).

    Google Scholar 

  65. Vinogradov, I.M.: ‘A new estimate for ζ(l +it)’, Izv. Akad. Nauk. Ser. Mat. 22 (1958), 161–164 (in Russian).

    MATH  Google Scholar 

  66. Montgomery, H.L.: ‘Zeros of L-functions’, Invent. Math. 8 (1969), 346–354.

    MATH  MathSciNet  Google Scholar 

  67. Prachar, K.: Primzahlverteilung, Springer, 1957.

    MATH  Google Scholar 

  68. Chudakov, N.G.: Introduction to the theory of Dirichlet L-functions, Moscow-Leningrad, 1947 (in Russian).

    Google Scholar 

  69. Hecke, E.: Mathematische Werke, Vandenhoeck & Ruprecht, 1959.

    MATH  Google Scholar 

  70. Ivic, A.: The Riemann zeta-function, Wiley, 1985.

    MATH  Google Scholar 

  71. Patterson, S.J.: An introduction to the theory of the Riemann zeta-function, Cambridge Univ. Press, 1988.

    MATH  Google Scholar 

  72. Edwards, H.M.: Riemann’s zeta-function, Acad. Press, 1974.

    MATH  Google Scholar 

  73. Brent, R.P., Lune, J. van de, Riele, H.J.J. te and Winter, D.T.: The first 200 000 001 zeros of Riemann’s zeta-function’, in Computational methods in number theory, Math. Centre, Amsterdam, 1982, pp. 389–403.

    Google Scholar 

  74. Levinson, N.: ‘More than one third of the zeros of the Riemann zeta-function are on Re(s) = 1/2’, Adv. Math. 13 (1974), 383–436.

    MATH  MathSciNet  Google Scholar 

  75. Apostol, T.M.: Introduction to analytic number theory, Springer, 1976.

    MATH  Google Scholar 

  76. Dedekind, R.: Gesammelte Math. Werke, 1–3, Vieweg, 1930–1932.

    Google Scholar 

  77. Hardy, G.H. and Wright, E.M.: An introduction to the theory of numbers, Clarendon Press, 1979.

    MATH  Google Scholar 

  78. Haselgrove, C.B. and Miller, J.C.P: Tables of the Riemann zeta-function, Cambridge Univ. Press, 1960.

    MATH  Google Scholar 

  79. Hecke, E.: Vorlesungen über die Theorie der algebraischen Zahlen, Chelsea, reprint, 1970.

    MATH  Google Scholar 

  80. Ivic, A.: Topics in recent zeta-function theory, Publ. Math. Orsay, 1983.

    MATH  Google Scholar 

  81. Landau, E.: Handbuch der Lehre von der Verteilung der Primzahlen, Chelsea, reprint, 1953.

    MATH  Google Scholar 

  82. Lehman,R.S.: ‘Separation of zeros of the Riemann zeta-function’, Math. of Comp. 20 (1966), 523–541.

    MATH  MathSciNet  Google Scholar 

  83. Riele, H.J.J. te, Lune, J. van de and Winter, D.T.: ‘On the zeros of the Riemann zeta-function in the critical strip IV’, Math. of Comp. 46 (1986), 667–682.

    MATH  Google Scholar 

  84. Zagier, D.B.: Zetafunktionen und quadratische Körper, Springer, 1981.

    MATH  Google Scholar 

  85. Artin, E.: ‘Quadratische Körper im Gebiet der höheren Kongruenzen I, II’, Math. Z. 19 (1924), 153–246.

    MathSciNet  Google Scholar 

  86. Weil, A.: Courbes algébriques et variétés abéliennes. Sur les courbes algébriques et les varietés qui s’en deduisent, Hermann, 1948.

    Google Scholar 

  87. Weil, A.: ‘Numbers of solutions of equations in finite fields’, Bull. Amer. Math. Soc. 55, no. 5 (1949), 497–508.

    MATH  MathSciNet  Google Scholar 

  88. Deligne, P.: ‘La conjecture de Weil I’, Publ. Math. IHES 43 (1974), 273–307.

    MathSciNet  Google Scholar 

  89. Grothendieck, A., et al. (eds.): Dix exposés sur la cohomologie des schémas, North-Holland, 1968.

    Google Scholar 

  90. Dwork, B.: ‘A deformation theory for the zeta-function of a hypersurface’, in Proc. Internat. Congress Mathematicians (Djursholm, 1963), Almqvist & Weksell, 1963, pp. 247–259.

    Google Scholar 

  91. Jacquet, E. and Langlands, R.: Automorphic forms on GL(2), Springer, 1970.

    MATH  Google Scholar 

  92. Manin, Yu.I.: ‘Cyclotomic fields and modular curves’, Russian Math. Surveys 26, no. 6 (1971), 7–78. (Uspekhi Mat. Nauk 26, no. 6 (1971), 7–71)

    MATH  MathSciNet  Google Scholar 

  93. Kuyk, A., et al. (eds.): Modular functions of one variable 1-IV, Lecture notes in math., 349; 350, Springer, 1973.

    Google Scholar 

  94. Serre, J.-P.: ‘Zeta and L-functions’, in O.F.G. Schilling (ed.): Arithmetical Algebraic Geometry (Proc. Purdue Conf. 1963), Harper & Row, 1965, pp. 82–92.

    Google Scholar 

  95. Serre, J.-P.: ‘Facteurs locaux des fonctions zêta des variétés algébriques (définitions et conjectures)’, Sem. Delange-Pisot-Poitou 19 (1969/70).

    Google Scholar 

  96. Swinnerton-Dyer, P.: ‘The conjectures of Birch and Swinnerton-Dyer and of Tate’, in T. Springer (ed.): Local Fields (Proc. Conf Driebergen, 1966), Springer, 1967, pp. 132–157.

    Google Scholar 

  97. Tate, J.: ‘Algebraic cycles and poles of zeta-functions’, in O.F.G. Schilling (ed.): Arithmetical Algebraic Geometry (Proc. Purdue Conf. 1963), Harper & Row, 1965, pp. 93–110.

    Google Scholar 

  98. Shafarevich, I.R.: The zeta-function, Moscow, 1969 (in Russian).

    Google Scholar 

  99. Shimura, G.: Introduction to the mathematical theory ofautomorphic functions, Princeton Univ. Press, 1971.

    Google Scholar 

  100. Honda, T.: ‘Formal groups and zeta-functions’, Osaka J. Math. 5 (1968), 199–213.

    MATH  MathSciNet  Google Scholar 

  101. Parshin, A.N.: ‘Arithmetic on algebraic varieties’, J. Soviet Math. 1, no. 5 (1973), 594–620. (Itogi Nauk. Algebra. Topol. Geom. 1970(1910/11), 111–151)

    MATH  Google Scholar 

  102. Deligne,P.: ‘La conjecture de Weil, II’, Publ. Math. IHES 52 (1980), 137–252.

    MATH  MathSciNet  Google Scholar 

  103. Freitag, E. and Kiehl, R.: Etale cohomology and the Weil conjecture, Springer, 1988.

    MATH  Google Scholar 

  104. Kolyvagin, V.: Tiniteness of E(Q) and III(E, Q) for a subclass of Weil curves’, Math. USSR Izv. 33 (1989). (Izv. Akad. Nauk SSSR 52 (1988), 522–540)

    Google Scholar 

  105. Kolyvagin, V.: ‘On the Mordell-Weil group and the Shafarevich —Tate group of Weil elliptic curves’, Math. USSR Izv. 33 (1989). (Izv. Akad. Nauk SSSR 52 (1988), 1154–1180)

    MathSciNet  Google Scholar 

  106. Kolyvagin, V.: ‘On the structure of the Shafarevich-Tate groups’, in S. Bloch, et al. (ed.): Algebraic Geometry, Lecture notes in math., Vol. 1479, Springer, 1991, pp. 94–121.

    Google Scholar 

  107. Rubin, K.: ‘The Tate-Shafarevich group and L-functions of elliptic curves with complex multiplication’, Invent. Math. 89 (1987), 527–560.

    MATH  MathSciNet  Google Scholar 

  108. Bloch, S.: ‘Algebraic cycles and values of L-functions Y’, J. Reine Angew. Math. 350 (1984), 94–108.

    MATH  MathSciNet  Google Scholar 

  109. Bloch, S.: ‘Algebraic cycles and values of L-functions II’, Duke Math. J. 52 (1985), 379–397.

    MATH  MathSciNet  Google Scholar 

  110. Beilinson, A.: ‘Higher regulators and values of L-functions’, J. Soviet Math. 30 (1985), 2036–2070. (Itogi Nauk. i Tekhn. Sovr. Probl. Mat. 24 (1984), 181–238)

    MATH  Google Scholar 

  111. Zhegalkin, I.I.: Mat. Sb. 34, no. 1 (1927), 9–28.

    Google Scholar 

  112. Cohn, P.M.: Universal algebra, Reidel, 1986.

    Google Scholar 

  113. Yablonskiĭ, S.V., Gavrilov, G.P. and Kudryavtsev, V.B.: Functions of the algebra of logic and Post classes, Moscow, 1966 (in Russian).

    Google Scholar 

  114. Post, E.: The two-valued iterative systems of mathematical logic, Princeton Univ. Press, 1941.

    MATH  Google Scholar 

  115. Zhukovskiĭ, N.E.: Collected works, 2. Hydrodynamics, Moscow-Leningrad, 1949 (in Russian).

    Google Scholar 

  116. Zhukovskiĭ, N.E.: Collected works, 6. The theoretical foundations of flying, Moscow-Leningrad, 1950 (in Russian).

    MATH  Google Scholar 

  117. Markushevich, A.I.: The theory of functions of a complex variable, 1–2, Chelsea (translated from the Russian).

    Google Scholar 

  118. Sedov, L.I.: Two-dimensional problems in hydrodynamics and aerodynamics, Acad. Press, 1965 (translated from the Russian).

    MATH  Google Scholar 

  119. Kochin, N.E., Kibel’, I.A. and Roze, N.V.: Theoretical hydrodynamics, 1, Moscow, 1963 (in Russian).

    Google Scholar 

  120. Birhoff, G.: Hydrodynamics, Princeton Univ. Press, 1960.

    Google Scholar 

  121. Lighthill, J.: An informal introduction to theoretical fluid mechanics, Clarendon Press, 1986.

    MATH  Google Scholar 

  122. Mises, R. von: Theory of flight, Dover, reprint, 1959.

    Google Scholar 

  123. Landau, L.D. and Lifshitz, E.M.: Fluid mechanics, Addison-Wesley, 1959 (translated from the Russian).

    Google Scholar 

  124. Birkhoff, G.: Hydrodynamics, Princeton Univ. Press, 1960.

    MATH  Google Scholar 

  125. Lamb, H.: Hydrodynamics, Cambridge Univ. Press, 1932.

    MATH  Google Scholar 

  126. Milne-Thompson, L.M.: Theoretical hydrodynamics, McMillan, 1957.

    Google Scholar 

  127. Prandtl, L. and Tietjens, O.G.: Applied hydro- & aeromechanics, Dover, reprint, 1934.

    Google Scholar 

  128. Prandtl, L. and Tietjens, O.G.: Fundamentals of hydro- & aeromechanics, Dover, reprint, 1934.

    Google Scholar 

  129. Ibragimov, I.A. and Linnik, Yu.V.: Independent and stationary sequences of random variables, Wolters-Noordhoff, 1971 (translated from the Russian).

    MATH  Google Scholar 

  130. Petrov, V.V.: Sums of independent random variables, Springer, 1975 (translated from the Russian).

    Google Scholar 

  131. Serfling, R.J.: Approximation theorems of mathematical statistics, Wiley, 1980.

    MATH  Google Scholar 

  132. Wentzell, A.D. [A.D. Ventsel’]: Limit theorems on large deviations for Markov stochastic processes, Kluwer, 1990 (translated from the Russian).

    MATH  Google Scholar 

  133. Saulis, L. and Statulevicius, V.A.: Limit theorems for large deviations, Kluwer, 1991 (translated from the Russian).

    MATH  Google Scholar 

  134. Bolker, E.: ‘A class of convex bodies’, Trans. Amer. Math. Soc. 145 (1969), 323–345.

    MATH  MathSciNet  Google Scholar 

  135. Weil, W.: ‘Kontinuierliche Linearkombination von Strecken’, Math. Z. 148, no. 1 (1976), 71–84.

    MATH  MathSciNet  Google Scholar 

  136. Schneider,R and Weil, W.: ‘Zonoids and related topics’, in P.M. Gruber and J.M. Wills (eds.): Convexity and Its Applications, North-Holland, 1983, pp. 296–317.

    Google Scholar 

  137. Goodey, P. and Weil, W.: ‘Zonoids and generalisations’, in P.M. Gruber and J.M. Wills (eds.): Handbook of Convex Geometry, North-Holland, 1992.

    Google Scholar 

  138. Zorn, M.: ‘A remark on a method in transfinite algebra’, Bull. Amer. Math. Soc. 41 (1935), 667–670.

    MathSciNet  Google Scholar 

  139. Kelley, J.L.: General topology, Springer, 1975.

    MATH  Google Scholar 

  140. Campbell, P.J.: The origin of ‘Zorn’s lemma, Historia Math. 5(1978), 77–89.

    MATH  MathSciNet  Google Scholar 

  141. Moore, G.H.: Zermelo’s axiom of choice, Springer, 1982.

    MATH  Google Scholar 

  142. Rubin, J. and Rubin, H.: Equivalents of the axiom of choice, 1–2, North-Holland, 1963–1985.

    MATH  Google Scholar 

  143. Zygmund, A.: ‘Smooth functions’, Duke Math. J. 12, no. 1 (1945), 47–76. (Also: Selected papers of Antoni Zygmund, Vol. 2, Kluwer, 1989, pp. 184–213.).

    MATH  MathSciNet  Google Scholar 

  144. Nikol’skiĭ, S.M.: Approximation of functions of several variables and imbedding theorems, Springer, 1975 (translated from the Russian).

    Google Scholar 

  145. Efimov, A.V.: ‘Estimation of the modules of continuity of functions of class 1/2’ Izv. Akad. Nauk. SSSR Ser. Mat. 21, no. 2 (1957), 283–288 (in Russian).

    MATH  MathSciNet  Google Scholar 

  146. Cheney, E.W: Introduction to approximation theory, Chelsea, reprint, 1982, p. 203ff.

    MATH  Google Scholar 

Download references

Authors

Editor information

M. Hazewinkel

Rights and permissions

Reprints and permissions

Copyright information

© 1993 Kluwer Academic Publishers

About this chapter

Cite this chapter

Hazewinkel, M. (1993). Z. In: Hazewinkel, M. (eds) Encyclopaedia of Mathematics. Encyclopaedia of Mathematics, vol 9. Springer, Dordrecht. https://doi.org/10.1007/978-94-015-1233-6_7

Download citation

  • DOI: https://doi.org/10.1007/978-94-015-1233-6_7

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-8238-1

  • Online ISBN: 978-94-015-1233-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics