Skip to main content

The Response of a Glacier or an Ice Sheet to Seasonal and Climatic Changes

  • Chapter
Theoretical Glaciology

Part of the book series: Mathematical Approaches to Geophysics ((MAAG,volume 1))

  • 15 Accesses

Abstract

In the preceding chapters, attention was focused on the development of a mathematical model of glacier flow and on first flow applications under plane motion. Except for the surface-wave stability analysis in a parallel-sided ice strip in Chapter 4, most questions were concerned with the response of a glacier and ice sheet to steady-state conditions, or at least conditions close to such a steady state.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bindschadler, R. A., A time-dependent model of temperate glacier flow and its application to predict changes in the surge-type Variegated Glacier during its quiescent phase. PhD Thesis. University of Washington, 1978.

    Google Scholar 

  2. Bindschadler, R. A., W. D. Harrison, C. F. Raymond, and C. Gautet, Thermal regime of a surge-type glacier. J. Glaciology. 16, 251–259. 1976.

    Google Scholar 

  3. Bindschadler, R. A., W. D. Harrison, C. F. Raymond, and R. Crosson, Geometry and dynamics of a surge-type glacier. J. Glaciology, 18, 181–194, 1977.

    Google Scholar 

  4. Budd, W. F., A first simple model for periodically self-surging glaciers. J. Glaciology, 14, 3–21, 1975.

    Google Scholar 

  5. Budd, W. F. and D. Jenssen, Numerical modelling of glacier systems. Union Géodesique et Géophysique Internationale. Association Internationale d’Hydrologie Scientifique, Symposium Neiges et Glaces, Actes du Colloque de Moscow. International Association for Scientific Hydrology Publ., 104, 257–291. 1975.

    Google Scholar 

  6. Clarke, G. K. C., Thermal regulation of glacier surging. J. Glaciology. 16, 231–250. 1976.

    Google Scholar 

  7. Clarke, G. K. C., P. W. Cary and W. R. Peltier, A creep instability analysis of the Antarctic and Greenland ice sheet. Can. J. Earth Sci., 16, 182–188, 1979.

    Article  Google Scholar 

  8. Courant, R. and K. O. Friedrichs, Supersonic Flow and Shock Waves, Applied Mathematical Sciences, Vol. 21. Springer-Verlag. New York. Heidelberg, Berlin, 1976.

    Book  Google Scholar 

  9. Finsterwalder, S., Die Theorie der Gletscherschwankungen. Zeitschrift für Gletscherkunde. 2. 81–102, 1907.

    Google Scholar 

  10. Finsterwalder, R., Chamonix Glacier, (letter to editor), J. Glaciology, 3, 547–548, 1959.

    Google Scholar 

  11. Fowler, A. C., Waves on glaciers, J. Fluid Mech., 120, 283–321, 1982.

    Article  Google Scholar 

  12. Fowler, A. C. and D. A. Larson, On the flow of polythermal glaciers. Part II: Surface wave analysis, Proc. Royal Soc. London. A370. 155–171. 1980.

    Article  Google Scholar 

  13. Hutter, K., Time dependent surface elevation of an ice slope. J. Glaciology. 25. 247–266. 1980.

    Google Scholar 

  14. Hutter, K., The effect of longitudinal strain on the shear stress of an ice sheet. In defense of using stretched coordinates. J. Glaciology. 27. 39–56. 1981.

    Google Scholar 

  15. Jonas, J. J. and F. Müller, Deformation of ice under high internal shear stresses. Can. J. Earth Science, 6. 963–968. 1969.

    Article  Google Scholar 

  16. Kluwick, A., Kinematische Wellen, Acta Mechanica, 26. 15–46. 1977.

    Article  Google Scholar 

  17. Langdon, J. and C. F. Raymond, Numerical calculation of adjustment of a glacier surface to perturbations of ice thickness. Dokl. Acad. Sci. U.S.S.R. Glaciol. Sect., 32, 123–133. 1978.

    Google Scholar 

  18. Lick, W., The propagation of disturbances on glaciers. J. Geophys. Res., 79. 2181–2197. 1970.

    Google Scholar 

  19. Lighthill, M. J. and G. B. Whitham, On kinematic waves: I. Flood movements in long rivers, Proc. Royal Soc. London, A229, 281–316, 1955.

    Article  Google Scholar 

  20. Lighthill, M. J. and G. B. Whitham, On kinematic waves: 1I. Theory of traffic flow on long crowded roads. Proc. Royal Soc. London, A229, 318–345, 1955.

    Google Scholar 

  21. Lliboutry, L. A., La dynamique de la Mer de Glace et la vague de 1891–95 d’après les mesures de Joseph Vallot. Union Géodésique et Géophysique Internationale. Association Internationale d’Hydrologie Scientifique, Symposium de Chamonix (1958), Physique du mouvement de la glace, International Association for Scientific Hydrology Publ., 47. 125–138. 1958.

    Google Scholar 

  22. Lliboutry, L. A., Traité de glaciologie. Tome II: Glaciers, variations du climat, sols gelés, Masson. Paris. 1965.

    Google Scholar 

  23. Lliboutry, L. A., The glacier theory, in Advances in Hydrosciences, Edited by Ven Te Chow, Academic Press, New York, Vol. 7 81–167. 1971.

    Google Scholar 

  24. Lliboutry, L. A., Instability of temperate ice sheets owing to a feedback mechanism. Nature. 203. 627–629. 1964.

    Article  Google Scholar 

  25. Marchi de, L., La propagation des ondes dans les glaciers. Zeitschrift für Gletscherkunde. 5. 207–211, 1911.

    Google Scholar 

  26. Meier, M. F. and J. N. Johnson, The kinematic wave on Nisqually Glacier, Washington, J. Geophys. Res.. 67, 886, 1962.

    Google Scholar 

  27. Morland, L. W. and I. R. Johnson, Steady motion of ice sheets, J. Glaciology. 25. 229–246. 1980.

    Google Scholar 

  28. Morland, L. W. and I. R. Johnson, Effects of bed inclination and topography on steady isothermal ice sheets. J. Glaciology, 25, 225–246, 1980.

    Google Scholar 

  29. Nielsen, L. E., The ice-dam. powderflow theory of glacier surges, Can. J. Earth Sci.. 6, 955–961, 1969.

    Article  Google Scholar 

  30. Nye, J. F., Surges in glaciers. Nature, 181, 1450–1451, 1958.

    Article  Google Scholar 

  31. Nye, J. F., The response of glaciers and ice sheets to seasonal and climatic changes, Proc. Rot’. Soc. London, 256A, 559–584. 1960.

    Article  Google Scholar 

  32. Nye. J. F., On the theory of the advance and retreat of glaciers, Geophys. J. Roy. Astron. Soc.. 7. 431–456. 1963.

    Article  Google Scholar 

  33. Nye, J. F., The response of a glacier to changes in the rate nourishment and wastage. Proc. Roy. Soc. London, 275. 87–112, 1963.

    Article  Google Scholar 

  34. Nye, J. F., The frequency response of glaciers, J. Glaciology, 5, 567–587, 1965.

    Google Scholar 

  35. Nye, J. F., A numerical method of inferring the budget history of a glacier from its advance and retreat, J. Glaciology, 5, 589–607. 1965.

    Google Scholar 

  36. Palmer, A. C., A kinematic wave model of glacier surge. J. Glaciology, 11, 65–72, 1972.

    Google Scholar 

  37. Raymond, C. F., Temperate valley glaciers, in Dynamics of Snow and Ice Masses, edited by S. C. Colbeck. Academic Press. New York. pp. 79–139. 1980.

    Google Scholar 

  38. Rasmussen, L. A. and W. J. Campell, Comparison of three contemporary flow laws in a three dimensional, time-dependent glacier model. J. Glaciology, 12, 361–374, 1973.

    Google Scholar 

  39. Robin, G. de Q., Initiation of glacier surges, Can. J. Earth Sci., 6, 916–928, 1969.

    Google Scholar 

  40. Schytt, V., Some comments on glacier surges in Eastern Svalbard. Can. J. Earth Sci.. 6, 867–873. 1969.

    Article  Google Scholar 

  41. Thompson, D. E., Stability of glaciers and ice sheets against flow perturbations. J. Glaciology. 24, 427–441. 1979.

    Google Scholar 

  42. Untersteiner, N. and J. F. Nye, Computations of the possible future behavior of Berendon Glacier. Canada, J. Glaciologr. 7, 205–213. 1968.

    Google Scholar 

  43. Weertman, J., Travelling waves on glaciers, Union Géodesique et Géophysique Internationale. Association Internationale d’Hydrologie Scientifique. Symposium de Chamonix (1958). Physique du mouvement de la glace. International Association for Scientific Hydrology, Puhl., 47. 162–168, 1958.

    Google Scholar 

  44. Whitham, G. B., Linear and Nonlinear Waves. John Wiley-Interscience, New York. 1974.

    Google Scholar 

  45. Szidarowski, F. and S. Yakowitz, Principles and Procedures of Numerical Analysis. Plenum Press, New York. London. 1978.

    Google Scholar 

  46. Yuen, D. A. and G. Schubert, The role of shear heating in the dynamics of large ice masses. J. Glaciology. 24. 195–212. 1979.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1983 D. Reidel Publishing Company, Dordrecht, Holland

About this chapter

Cite this chapter

Hutter, K. (1983). The Response of a Glacier or an Ice Sheet to Seasonal and Climatic Changes. In: Theoretical Glaciology. Mathematical Approaches to Geophysics, vol 1. Springer, Dordrecht. https://doi.org/10.1007/978-94-015-1167-4_6

Download citation

Publish with us

Policies and ethics