Skip to main content

The Application of the Shallow-Ice Approximation

  • Chapter
Theoretical Glaciology

Part of the book series: Mathematical Approaches to Geophysics ((MAAG,volume 1))

Abstract

In the previous chapter, the nearly parallel-sided ice slab was thoroughly analysed; in particular, its steady-state response was treated, and it was shown how small-amplitude bottom protuberances affect surface topography, basal stresses and surface velocities. Attention was restricted to plane motion and to ice slabs for which the mean bed and mean surface were plane and strictly parallel so that the mean ice thickness was constant. In reality, this is only approximately correct as it is well known that ice-sheet thicknesses may vary from up to 3000 m inland or more to zero thickness at the snout. On length scales which are comparable with the extension of the ice sheet, the assumption of small variations about a parallel-sided ice slab is thus unrealistic. On the other hand, calculations, as those performed in Chapter 4, must be limited to length scales for which ice-sheet thicknesses do not deviate appreciably from a layer with a constant thickness.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Benney, D. J., Long waves in liquid films, J. Math. Phys., 45, 150–155, 1966.

    Google Scholar 

  2. Bodvarsson. G.. On the flow of ice-sheets and glaciers, Jrikull, 5, 1–8. 1955.

    Google Scholar 

  3. Budd, W. F., The longitudinal velocity profile of large ice masses. International Union of Geodesy and Geophysics. International Association of Scientific Hydrology, General Assembly of Bern, 25 Sept.-7 Oct.. 1967 (Commission of Snow and Ice). Reports and Discussions, International Association of Scientific Hydrology, Publ., 79, 58–77, 1968.

    Google Scholar 

  4. Budd, W. F., The dynamics of ice masses. ANA RE Scientific Reports, Ser. A(IV), Glaciology, Publ., 108, 1969.

    Google Scholar 

  5. Budd, W. F.. The longitudinal stress and strain-rate gradients in ice masses. J. Glaciology. 9, 19–27, 1970.

    Google Scholar 

  6. Budd, W. F. and D. Jenssen. Numerical modelling of glacier systems. Union Géodesique et géophysique Internationale. Association Internationale d’Hydrologie Scientifique. Symposium neiges et glaces. Actes du colloque de Moscow. International Association of Scientific Hydrology. Publ., 104. 257–291, 1975.

    Google Scholar 

  7. Bulirsch. R. and J. Stoer. Einführung in die Numerische Mathematik. 1. 11. Springer-Verlag. Berlin. 1976’78.

    Google Scholar 

  8. Colbeck. S. C. and R. J. Evans. A flow law for temperate glaciers. J. Glaciology, 12. 71–86. 1964.

    Google Scholar 

  9. Cole. J. D. Perturbation Methods in Applied Mathematics. Blaisdell, Waltham, Mass.. 1968.

    Google Scholar 

  10. Collins, I. F.. On the use of the equilibrium equations and flow law in relating surface and bed topography of glaciers and ice sheets. J. Glaciology. 7. 199–204. 1968.

    Google Scholar 

  11. Fowler. A. C. and D. A. Larson. On the flow of polythermal glaciers: I. Model and preliminary analysis. Proc. Royal Soc. London, A363. 217–242. 1978.

    Google Scholar 

  12. Fowler. A. C. Waves on glaciers, J. Fluid Mech., 120. 283–321. 1982.

    Article  Google Scholar 

  13. Fowler. A. C. and D. A. Larson. On the flow of polythermal glaciers: II. Surface wave analysis, Proc. Royal Soc. London. A370. 155–171. 1980.

    Google Scholar 

  14. Friedrichs. K. O. Water waves on shallow sloping beach. Comm. Appl. Math. 1. 109–134. 1948.

    Google Scholar 

  15. Hutter. K. Time dependent surface elevation of an ice slope. J. Glaciology. 25. 247–266. 1980.

    Google Scholar 

  16. Flutter K., The effect of longitudinal strain on the shear stress of an ice sheet. In defense of using stretched coordinates. J. Glaciology, 27, 39–56. 1981.

    Google Scholar 

  17. Hutter. K. Surface waves in a non-Newtonian incompressible liquid film, Z. Angew Math. Phys., 30. 1017–1022, 1979.

    Article  Google Scholar 

  18. Johnson, I. R., The steady profile of an axisymmetric ice sheet, J. Glaciology, 25. 25–37, 1981.

    Google Scholar 

  19. Johnson. I. R.. Steady Ice sheet flow, a thesis submitted to the University of East Anglia in application for the degree of Doctor of Philosophy, pp. 135, 1981.

    Google Scholar 

  20. Keller. J. B. The solitary wave and periodic waves in shallow water, Comm. Appl. Math. 1. 323–339, 1948.

    Google Scholar 

  21. Lliboutry. L. A.. La dynamique de la Mer de Glace et la vague de 1891–95 d’après les mesures de Joseph Vallot. Union Géodésique et Géophysique Internationale, Association Internationale d’Hydrologie Scientifique. Symposium de Chamonix (1958), Physique du mouvement de la glace, International Association for Scientific Hydrology, Publ., 47. 125–138. 1958.

    Google Scholar 

  22. Mahaffy, M. W. A three-dimensional numerical model of ice sheets: Tests on the Barnes Ice Cap. North-west Territories. J. Geophys. Res. 81, 1059–1066. 1976.

    Article  Google Scholar 

  23. Morland. L. W. and I. R. Johnson. Steady motion of ice sheets, J. Glaciology, 25, 229–246, 1980.

    Google Scholar 

  24. Morland, L. W. and I. R. Johnson. Effects of bed inclination and topography on steady ice sheets. J. Glaciology. 25, 225–246. 1980.

    Google Scholar 

  25. Nye. J. F.. A comparison between the theoretical and the measured long profile of the Unteraar glacier. J. Glaciology, 2. 103–107, 1952.

    Google Scholar 

  26. Nye, J. F., A method of calculating the thickness of the ice sheets. Nature, 169. 529–530. 1952.

    Article  Google Scholar 

  27. Nye, J. F., The motion of ice sheets and glaciers. J. Glaciology, 3. 493–506. 1959.

    Google Scholar 

  28. Nye. J. F., Plasticity solution for a glacier snout. J. Glaciology, 6. 695–715. 1967.

    Google Scholar 

  29. Nye, J. F., The effect of longitudinal stress on the shear stress at the base of an ice sheet. J. Glaciology, 8, 207–213. 1969.

    Google Scholar 

  30. Orowan, E.. The flow of ice and other solids. J. Glaciology. 1. 231–240, 1949.

    Article  Google Scholar 

  31. Paterson. W. S. B., Laurentide ice sheet: Estimated volumes during Late Wisconsin. Rev. Geophys. Space Phys. 10, 885–917, 1972.

    Article  Google Scholar 

  32. Paterson. W. S. B. Ice sheets and ice shelves. In: Dynamics of Snow and Ice Masses, edited by S. C. Colbeck. Academic Press. New York, 1980.

    Google Scholar 

  33. Paterson. W. S. B. The Physics of Glaciers. Pergamon Press. Oxford, New York. Toronto. Sydney. Braunschweig. 1972.

    Google Scholar 

  34. Robin. G. de Q. Surface topography of ice sheets. Nature. 215. 1029–1032, 1967.

    Article  Google Scholar 

  35. Shumskiy, P. A.. On the theory of glacier motion, International Union of Geodesy and Geophysics. International Association of Scientific Hydrology, General Assembly of Helsinky 25.7.-6.8.1960, International Association of Scientific Hydrology, Publ., 55, 142–149. 1961.

    Google Scholar 

  36. Shumskiy. P. A., On the theory of glacier variations. Bull., Int. Assoc. Sci. H_rdrol.. 8. 45–56, 1963.

    Article  Google Scholar 

  37. Shumskiy, P. A., The distribution of stress, velocity and temperature in glaciers, in Physics of Snow and Ice. edited by H. Oura. International Conference on Low Temperature Science 1966. Proceedings. Vol. 1, pp. 371–384. 1967.

    Google Scholar 

  38. Sugden. D. E., Reconstruction of the morphology dynamics and thermal characteristics of the Laurentide Ice Sheet at its maximum. Arct. Alp. Res.. 9. 21–47. 1972.

    Article  Google Scholar 

  39. Stoker, J. J.. Water Waves, the Mathematical Theory with Applications. Interscience Publishers, New York. 1957.

    Google Scholar 

  40. Szidarowski, F. and S. Yakowitz. Principles and Procedures of Numerical Analysis. Plenum Press, New York, London. 1978.

    Google Scholar 

  41. Vialov, S. S., Regularities of Ice Deformation. International Union of Geodesy and Geophysics. International Association of Scientific Hydrology. Symposium of Chamonix. 1958, Physics of the movement of the ice, International Association of Scientific Hydrology. Publ., 47, 383–391. 1958.

    Google Scholar 

  42. Weertman, J., Equilibrium profile of ice caps. J. Glaciology, 3. 953–964, 1961.

    Google Scholar 

  43. Weertman. J., Rate of growth or shrinkage of nonequilibrium ice sheets, J. Glaciology, 5. 145–158, 1964.

    Google Scholar 

  44. Weertman, J., Effect of a basal water layer on the dimensions of ice sheets, J. Glaciology, 6. 191–207, 1966.

    Google Scholar 

  45. Weertman. J., Postition of ice-divides and ice centers on ice sheets, J. Glaciology, 12. 353–360, 1973.

    Google Scholar 

  46. Weertman. J.. Comparison between measured and theoretical temperature profiles of the Camp Century, Greenland, borehole, J. Geophys. Res., 73, 2691–2700, 1968.

    Article  Google Scholar 

  47. Wehausen, J. V. and E. V. Laitone, Surface waves, in Handbuch der Physik, edited by S. Flügge, Vol. 4. Fluid Dynamics III, pp. 446–758. 1960.

    Google Scholar 

  48. Whitham, G. B. Linear and Non-linear Waves. John Wiley. New York. 1974.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1983 D. Reidel Publishing Company, Dordrecht, Holland

About this chapter

Cite this chapter

Hutter, K. (1983). The Application of the Shallow-Ice Approximation. In: Theoretical Glaciology. Mathematical Approaches to Geophysics, vol 1. Springer, Dordrecht. https://doi.org/10.1007/978-94-015-1167-4_5

Download citation

Publish with us

Policies and ethics