Skip to main content

Deformation, Recovery and Recrystallisation of some Common Silicates

  • Chapter
  • 102 Accesses

Abstract

To illustrate the general processes discussed in Chapter 6, we will now look at experimental work on some of the common silicate minerals, and try to relate this to observations on natural metamorphic rocks. The minerals chosen as examples are quartz, olivine, layer silicates and feldspar (especially plagioclase). The aim is to describe and try to interpret (i) microstructural features and (ii) preferred orientations, produced by deformation, recovery and recrystallisation. This should give us an indication of the extent to which we can relate microfabric features to metamorphic conditions, and may also tell us something about the processes controlling the deformation and recrystallisation of metamorphic minerals. I should emphasise that this kind of work is in its early stages, and no doubt many of the ideas expressed here will need alteration in the near future.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ave’Lallemant, H. G. (1967). Structural and petrofabric analysis of an ‘alpine-type’ peridotite: the lherzolite of the French Pyrenees. Leidse Geologische Mededelingen, 42, 1–57.

    Google Scholar 

  2. Ave’Lallemant, H. G. and Carter, N. L. (1970). Syntectonic recrystalliza-tion of olivine and modes of flow in the upper mantle. Bull. Geol. Soc. America, 81, 2203–20.

    Article  Google Scholar 

  3. Ave’Lallemant, H. G. and Carter, N. L. (1971). Pressure dependence of quartz deformation lamellae orientations. Amer. J. Science, 270, 218 – 35.

    Article  Google Scholar 

  4. Bell, T. H. (1973). Mylonite development in the Woodroffe Thrust, north of Amata, Musgrave Ranges, central Australia. Unpub. Ph.D. thesis, Univ. Adelaide.

    Google Scholar 

  5. Bell, T. H. (1974). Development of quartz preferred orientation in mylonites of the Woodroffe Thrust, Central Australia, in press.

    Google Scholar 

  6. Bell, T. H. and Etheridge, M. A. (1973). Microstructure of mylonites and their descriptive terminology. Lithos, 6, 337–48.

    Article  Google Scholar 

  7. Blacic, J. D. and Christie, J. M. (1973). Dislocation substructure of experimentally deformed olivine. Contribs. Mineralogy & Petrology, 42, 141–6.

    Article  Google Scholar 

  8. Boland, J. N., McLaren, A. C. and Hobbs, B. E. (1971). Dislocations associated with optical features in naturally deformed olivine. Contribs. Mineralogy & Petrology, 30, 53–63.

    Article  Google Scholar 

  9. Borg, I. Y. and Heard, H. C. (1969). Mechanical twinning and slip in experimentally deformed plagioclases. Contribs. Mineralogy & Petrology, 23, 128–35.

    Article  Google Scholar 

  10. Borg, I. Y. and Heard, H. C. (1971). Experimental deformation of plagioclases, in Experimental and Natural Rock Deformation, ed. Paulitsch, P. 375–403. Berlin: Springer-Verlag.

    Google Scholar 

  11. Carter, N. L. (1971). Static deformation of silica and silicates.J. Geophys. Research, 76, 5514–40.

    Article  Google Scholar 

  12. Carter, N. L. and Ave’Lallemant, H. G. (1970). High temperature flow of dunite and peridotite. Bull. Geol. Soc. Amer., 81, 2181–202.

    Article  Google Scholar 

  13. Carter, N. L., Christie, J. M. and Griggs, D. T. (1964). Experimental deformation and recrystallization of quartz.J.Geol., 72, 687–733.

    Article  Google Scholar 

  14. Champness, P. E. and Lorimer, G. W. (1971). An electron microscopic study of a lunar pyroxene. Contribs. Mineralogy & Petrology, 33, 171–83.

    Article  Google Scholar 

  15. Christie, J. M., Griggs, D. T. and Carter, N. L. (1964). Experimental evidence of basal slip in quartz.J. Geol., 72, 734–56.

    Article  Google Scholar 

  16. Christie, O. H. J. (1968). Spinodal precipitation in silicates. Introductory application to exsolution in feldspar. Lithos, 1, 187–92.

    Article  Google Scholar 

  17. Etheridge, M. A. (1971). Experimental investigations of the mechanisms of mica preferred orientation in foliated rocks. Unpub. Ph.D. thesis, Aust. National Univ.

    Google Scholar 

  18. Etheridge, M. A. and Hobbs, B. E. (1974). Chemical and deformational controls on recrystallization of mica. Contribs. Mineralogy & Petrology, 43, 111–24.

    Article  Google Scholar 

  19. Etheridge, M. A., Hobbs, B. E. and Paterson, M. S. (1973). Experimental deformation of single crystals of biotite. Contribs. Mineralogy & Petrology, 38, 21–36.

    Article  Google Scholar 

  20. Etheridge, M. A., Paterson, M. S. and Hobbs, B. E. (1973). Experimentally produced preferred orientation in synthetic mica aggregates. Contribs. Mineralogy & Petrology, 44, 275–94.

    Article  Google Scholar 

  21. Frondel, C. (1962). Dana’s System of Mineralogy. Vol. III. The Silica Minerals. New York: J. Wiley & Sons, Inc.

    Google Scholar 

  22. Ghose, S., Phakey, P. P. and Tidy, E. (1972). Spinodal decomposition in an alkali amphibole. Geol. Soc. America Abstracts, 4, 516.

    Google Scholar 

  23. Green, H. W. (1972). The nature of deformation lamellae in silicates. Bull. Geol. Soc. America, 83, 847–52.

    Article  Google Scholar 

  24. Green, H. W., Griggs, D. T. and Christie, J. M. (1970). Syntectonic and annealing recrystallization of fine-grained quartz aggregates, in Experimental and Natural Rock Deformation, ed. Paulitsch, P. 272–335. Berlin-Heidelberg-New York: Springer-Verlag.

    Chapter  Google Scholar 

  25. Green, H. W. and Radcliffe, S. V. (1972). Deformation processes in the upper mantle, in Flow and Fracture of Rocks, Amer. Geophysical Union, Monograph, ed. Heard, H. C. et al., 16, 139–56.

    Chapter  Google Scholar 

  26. Griggs, D. T. (1967). Hydrolytic weakening of quartz and other silicates. Geophys. J. Roy. Astron. Soc., 14, 19–32.

    Google Scholar 

  27. Griggs, D. T. and Blacic, J. D. (1965). Quartz: anomalous weakness of synthetic crystals. Science, 147, 292–5.

    Article  Google Scholar 

  28. Hobbs, B. E. (1968). Recrystallization of single crystals of quartz. Tectonophysics, 6, 353–401.

    Article  Google Scholar 

  29. Kehlenbeck, M. M. (1972). Deformation textures in the Lac Rouvray anorthosite mass. Canadian J. Earth Sci., 9, 1087–98.

    Article  Google Scholar 

  30. McLaren, A. C. and Hobbs, B. E. (1972). Transmission electron microscope investigation of some naturally deformed quartzites, in Flow and Fracture of Rocks. Amer. Geophysical Union, Monograph, ed. Heard, H. C. et al., 16, 55–66.

    Chapter  Google Scholar 

  31. McLaren, A. C. and Retchford, J. A. (1969). Transmission electron microscope study of the dislocations in plastically deformed synthetic quartz. Physica Status Solidi, 33, 657–68.

    Article  Google Scholar 

  32. McLaren, A. C., Retchford, J. A., Griggs, D. T. and Christie, J. M. (1967). Transmission electron microscope study of Brazil twins and dislocations experimentally produced in natural quartz. Physica Status Solidi, 19, 631–44.

    Article  Google Scholar 

  33. McLaren, A. C., Turner, R. G., Boland, J. N. and Hobbs, B. E. (1970). Dislocation structure of the deformation lamellae in synthetic quartz; a study by electron and optical microscopy. Contribs. Mineralogy & Petrology, 29, 104–15.

    Article  Google Scholar 

  34. Marshall, D., Hobbs, B. E. and Vernon, R. H. Experimental deformation and recrystallization of a peristerite (in preparation).

    Google Scholar 

  35. Maxwell, J. C. (1962). Origin of slaty and fracture cleavage in the Delaware Water Gap Area, New Jersey and Pennsylvania, in Petrologic studies. Amer. J. Science, ed. Engel, A. E. J., James, H. L. and Leonard, B. E. 281–311.

    Google Scholar 

  36. Means, W. D. and Paterson, M. S. (1966). Experiments on preferred orientation of platy minerals. Contribs. Mineralogy & Petrology, 13, 108–33.

    Article  Google Scholar 

  37. Means, W. D. and Williams, P. F. (1972). Crenulation cleavage and faulting in an artificial salt-mica schist.J. Geology, 80, 569–91.

    Article  Google Scholar 

  38. Möckel, J. R. (1969). Structural petrology of the garnet-peridotite of Alpe Arami (Ticino, Switzerland). Leidse Geologische Mededelingen, 42, 61–130.

    Google Scholar 

  39. Moore, A. C. (1973). Studies of igneous and tectonic textures and layering in the rocks of the Gosse Pile intrusion, Central Australia.J. Petrology, 14, 49–80.

    Google Scholar 

  40. Nicolas, A., Bouchez, J. L., Boudier, F. and Mercier, J. C. (1971). Textures, structures and fabrics due to solid state flow in some European lherzolites. Tectonophysics, 12, 55–86.

    Article  Google Scholar 

  41. Nicolas, A., Boudier, F. and Boullier, A. M. (1973). Mechanisms of flow in naturally and experimentally deformed peridotites. Amer. J. Science, 273, 853–76.

    Article  Google Scholar 

  42. Olsen, A. and Birkeland, T. (1973). Electron microscope study of peridotite xenoliths in kimberlites. Contribs. Mineralogy and Petrology, 42, 147–57.

    Article  Google Scholar 

  43. Owen, D. C. and McConnell, J. D. C. (1971). Spinodal behaviour in an alkali feldspar. Nature Physical Science, 230, 118–19.

    Google Scholar 

  44. Phakey, P., Dollinger, G. and Christie, J. M. (1972). Transmission electron microscopy of experimentally deformed olivine crystals, in Flow and Fracture of Rocks. Amer. Geophysical Union, Monograph, ed. Heard, H. C. et al., 16, 117–38.

    Chapter  Google Scholar 

  45. Powell, C. McA. (1969). Intrusive sandstone dykes in the Siamo Slate near Negaunee, Michigan. Bull. Geol. Soc. America, 80, 2585–94.

    Article  Google Scholar 

  46. Raleigh, C. B. (1968). Mechanisms of plastic deformation of olivine.J. Geophys. Research, 73, 5391–406.

    Article  Google Scholar 

  47. Ransom, D. M. (1971). Host control of recrystallized quartz grains. Mineralogical Mag., 38, 83–8.

    Article  Google Scholar 

  48. Seiffert, K. E. (1965). Deformation bands in albite. Amer. Mineralogist, 50, 1469–72.

    Google Scholar 

  49. Starkey, J. (1964). Glide twinning in the plagioclase feldspars, in Deformation Twinning, ed. Reed-Hill, R. E. et al. 177–91. New York: Gordon & Breach.

    Google Scholar 

  50. Tullis, J. A. (1968). Preferred orientation in experimental quartz mylonites. Trans. Amer. Geophys. Union, 39, 755.

    Google Scholar 

  51. Tullis, J. A. (1970). Quartz: preferred orientation in rocks produced by Dauphiné twinning. Science, 168, 1342–4.

    Article  Google Scholar 

  52. Tullis, J. A. (1971). Preferred orientations of experimentally deformed quartzites. Unpub. Ph.D. thesis, Univ. California, Los Angeles.

    Google Scholar 

  53. Tullis, J. A., Christie, J. M. and Griggs, D. T. (1973). Microstructures and preferred orientations of experimentally deformed quartzites. Bull. Geol. Soc. America, 84, 297–314.

    Article  Google Scholar 

  54. Tullis, T. E. (1971). Experimental development of preferred orientation of mica during recrystallization. Unpub. Ph.D. thesis, Univ. California, Los Angeles.

    Google Scholar 

  55. Vance, J. A. (1961). Polysynthetic twinning in plagioclase. Amer. Mineralogist, 46, 1097–119.

    Google Scholar 

  56. Vernon, R. H. (1965). Plagioclase twins in some mafic gneisses from Broken Hill, Australia. Mineralogical Mag., 35, 488–507.

    Article  Google Scholar 

  57. Vernon, R. H. (1975). Natural intragranular recrystallization of plagioclase (in preparation).

    Google Scholar 

  58. White, S. (1971). Natural creep deformation of quartzites. Nature Physical Science, 234, 175–7.

    Google Scholar 

  59. White, S., Crosby, A. and Evans, P. E. (1971). Dislocations in naturally deformed quartz. Nature Physical Science, 231, 85–6.

    Google Scholar 

  60. White, S. (1973). The dislocation structures responsible for the optical effects in some naturally-deformed quartzes.J. Materials Science, 8, 490–9.

    Article  Google Scholar 

  61. Wilson, C. J. L. (1973). The prograde microfabric in a deformed quartzite sequence, Mount Isa, Australia. Tectonophysics, 19, 39–81.

    Article  Google Scholar 

  62. Wilson, C. J. L. and Glass, J. (1974). Preferred orientation in quartz ribbon mylonite (in press).

    Google Scholar 

  63. Yar Khan, M. (1972). The structure and microfabric of a part of the Arltunga Nappe Complex, central Australia. Unpub. Ph.D. thesis, Australian National Univ., Canberra.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1976 R. H. Vernon

About this chapter

Cite this chapter

Vernon, R.H. (1976). Deformation, Recovery and Recrystallisation of some Common Silicates. In: Metamorphic Processes. Springer, Dordrecht. https://doi.org/10.1007/978-94-015-1109-4_7

Download citation

  • DOI: https://doi.org/10.1007/978-94-015-1109-4_7

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-0-04-552020-6

  • Online ISBN: 978-94-015-1109-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics