Skip to main content

Yeast-Derived Products

  • Chapter
Yeast Technology

Abstract

Although yeast is perhaps considered the oldest microbial associate of humankind, the role it played in shaping the lives of past civilizations was not recognized until the discovery of the microscope by van Leeuwenhoek two centuries ago. Many authorities now believe that complicated beverages like beer originated in Egypt around 6000 B.C. (Corran 1975). By 3000 B.C., bread making and brewing of beer were closely allied arts. Likewise, Assyrian and Egyptian historical documents dating as far back as 3500 B.C. mention grapes and wine. Although these civilizations were unaware of the chemical changes induced by yeast, they had sufficient empirical knowledge to modify their food products to make them more palatable, nutritious, and in some instances, intoxicating. The knowledge they acquired through trial and error was also transmitted through the ages to succeeding generations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Achstetter, T., and D. H. Wolf. 1985, Proteinases, proteolysis and biological control in the yeast Saccharomyces cerevisiae. Yeast 1:139–157.

    Article  Google Scholar 

  • Amoco Food Co. 1974. Torutein Product Bulletin. Chicago, Illinois.

    Google Scholar 

  • Andrews, A. G., H. J. Phaff, and M. P. Starr. 1976. Carotenoids of Phaffia rhodozyma, a red pigmented fermenting yeast. Phytochemistry. 15:1003–1007.

    Article  Google Scholar 

  • Anon. 1970. Single Cell Proteins. Protein Advisory Group Guidelines, no. 4. United Nations, New York.

    Google Scholar 

  • Arnold, W. N. 1971. Heat inactivation kinetics of yeast beta-fructofuranosidase. A polydispersing system. Biochim. Biophys. Acta. 178:347–353.

    Google Scholar 

  • Bernstein, S. and P. E. Plantz. 1977. Production of yeast from whey. Food Eng. 49(11):74–75.

    Google Scholar 

  • Biemaan, L., and M. D. Glantz. 1968. Properties of a fungal lactase. Biochim. Biophys. Acta. 167:373–377.

    Google Scholar 

  • Borglum, G. B., and M. Z. Sternberg. 1972. Isolation and characterization of β-galactosidase from Saccharomyces lactis. J. Food Sci. 37: 619–623.

    Article  Google Scholar 

  • Bucovaz, E. T., J. C. Morrison, W. D. Whybrew, and S. J. Tarnowski. 1981. Process for the preparation of CoA-SPC from baker’s yeast. U.S. Patent 4,284,552.

    Google Scholar 

  • Chuah, C. T., A. Sarko, Y. Deslandes, and R. H. Marchessault. 1983. Triple helical crystalline structure of curdlan and paranylon hydrates. Macromolecules 16:1375–1382.

    Article  Google Scholar 

  • Cohn, W. E., and E. Volkin. 1953. On the structure of ribonucleic acids. J. Biol. Chem. 203:319–332.

    Google Scholar 

  • Corran, H. S. 1975. A History of Brewing. David and Charles, Newton Abbot, London.

    Google Scholar 

  • Daly, W. H., and L. P. Ruiz. 1974. Reduction of RNA in single cell proteins in conjunction with fiber formation. Biotechnol. Bioeng. 16:285–287.

    Article  Google Scholar 

  • Davies, R. 1964. Lactose utilization and hydrolysis in Saccharomyces cerevisiae. J Gen. Microbiol. 37:81–98.

    Google Scholar 

  • Decker, R., and K. Dirr. 1944. Nonprotein nitrogen of yeast. II Comparison of purine fraction and extraction of nucleic acids. Biochem Z. 316:248–254.

    Google Scholar 

  • Deslandes, Y., R. H. Marchessault, and A. Sarko. 1980. Triple helical structure of (1→3)β-D-glucan. Macromolecules 13:1466–1471.

    Article  Google Scholar 

  • DiLuzio, N. R. 1987. Soluble phosphorylated glucan. International Publication No. 87/01037. Publication under the patent cooperation treaty. International Searching Authority, USA.

    Google Scholar 

  • Gascon, S., P. Neumann, and J. O. Lampen. 1968. Comparative study of the properties of purified internal and external invertases from yeast. J. Biol. Chem. 243:1573–1577.

    Google Scholar 

  • Gatellier, C., and G. Gilkamans. 1972. Process of improving the food value of microorganisms obtained by culturing on hydrocarbon substrates. U. S. Patent 3,702,283.

    Google Scholar 

  • Gilbert, H. J., and W. Jack. 1981. The effect of proteinases on phenylalanine ammonia-lyase from the yeast Rhodotorula glutinis. Biochem J. 199:715–723.

    Google Scholar 

  • Gilliland, R. B. 1956. Maltotriose fermentation in the species differentiation of Saccharomyces. Compt. Rand. Trav. Lab. Carlsberg. Ser. Physiol. 26:139–148.

    Google Scholar 

  • Goodson, W., D. Hohn, T. K. Hunt, and Y. K. Leung. 1976. Augmentation of some aspects of wound healing by a skin respiratory factor. J. Surgical Res. 21:125–129.

    Article  Google Scholar 

  • Hata, T., R. Hayashi, and E. Doi. 1967. Purification of yeast proteinases. Part I. Fractionation and some properties of the proteinases. Agric. Biol. Chem. 31:150–159.

    Article  Google Scholar 

  • Hu, A. S. L., R. G. Wolfe, and F. J. Reichel. 1959. The preparation and purification of β-galactosidase from Escherichia coli, ML 308. Arch. Biochem. Biophys. 81:500–507.

    Article  Google Scholar 

  • Ikeda, K. 1912. The taste of the salt of glutamic acid. Orig. Com. 8th Int. Congr. Appl. Chem. 18:147.

    Google Scholar 

  • Johnson, E. A., D. E. Conklin, and M. J. Lewis. 1977. The yeast Phaffia rhodozyma as a dietary pigment source for salmonids and crustaceans. J. Fish. Res. Board of Canada 34:2417–2421.

    Article  Google Scholar 

  • Johnson, E. A., and M.J. Lewis. 1979. Astaxanthin formation by the yeast, Phaffia rhodozyma. J. Gen. Microbiol. 115:173–183.

    Google Scholar 

  • Johnson, E. A., T. G. Villa, M. J. Lewis, and H. J. Phaff. 1978. Simple method for the isolation of astaxanthin from the basidiomycetous yeast, Phaffia rhodozyma. Appl. Environ. Microbiol 35:1155–1159.

    Google Scholar 

  • Katchman, B. J., and W. O. Fetty. 1955. Phosphorus metabolism in growing cultures of S. cerevisiae. J. Bacteriol. 69:607–615.

    Google Scholar 

  • Kinsella, J. E., and J. K. Shetty. 1982. Recovery of proteinaceous material having reduced nucleic acid levels, U.S. Patent 4,348,479.

    Google Scholar 

  • Kodama, S. 1913. Isolation of inosinic acid. Tokyokagaku (J. Chem. Soc. Japan) 34:751.

    Google Scholar 

  • Kuninaka, A. 1986. Nucleic acids, nucleotides and related compounds In Biotechnology. Vol. 4. H. J. Rehm and G. Reed. eds. Verlag Chemie., Florida. 72–86.

    Google Scholar 

  • Kuninaka, A., M. Fujimoto, K. Uchida, and H. Yoshino. 1980. Extraction of RNA from yeast packed into column without isomerization. Agric. Biol Chem. 44:1821–1827.

    Article  Google Scholar 

  • Lenney, J. F., and J. M. Dalbec. 1969. Yeast proteinase B. Identification of the inactive form as an enzyme inhibitor complex. Arch. Biochem. Biophys. 129:407–409.

    Article  Google Scholar 

  • Lindegren, C. C., S. Speigelman, and G. Lindegren. 1944. Mendelian inheritance of adaptive enzymes in yeast. Proc. Natl. Acad. Sci. USA 30:346–352.

    Article  Google Scholar 

  • Meister, H. 1965. Yeast invertase: An illusive but useful enzyme. Wallerstein Lasb. Commun. 28:7–15.

    Google Scholar 

  • Miller, M. W., M. Yoneyama, and M. Soneda. 1976. Phaffia: A new yeast genus in the Deuteromycotina (Blastomycetes). Int. J. Syst. Bacteriol. 26:286–291.

    Article  Google Scholar 

  • Mortimer, R. K., and D. C. Hawthorne. 1969. Yeast genetics. In The Yeasts, vol. 1, A. H. Rose and J. S. Harrison (eds.). Academic Press, New York, pp. 385–460.

    Google Scholar 

  • Nakajima, N., K. Ichikawa, M. Kamada, and E. Fujita. 1961. Food chemical studies on 5′ ribonucleotides. I. On the 5′ ribonucleotides in foods. (1) Determination of the 5′ nucleotides in various stocks by ion exchange chromatography. J. Agric. Chem. Soc. Japan. 35:797.

    Google Scholar 

  • Nakao, Y. 1979. Microbial production of nucleosides and nuceotides. In Microbial Technology, Microbial Processes, vol. 1, H. J. Peppier and D. Perlman (eds.). Academic Press, New York, pp. 311–354.

    Google Scholar 

  • Newell, J. A., E. A. Robbins, and R. D. Seeley, 1975. Manufacture of yeast protein isolate having reduced nucleic acid content by an alkali process, U.S. Patent 3,867,555.

    Google Scholar 

  • Newell, J. A., R. D. Seeley, and E. A. Robbins, 1975. Process of making yeast protein isolate having reduced nucleic acid levels, U.S. Patent 4,348,479.

    Google Scholar 

  • Ohashi, M., and S. Kozutsumi. 1966. Manufacture and utilization of invertase. I. Manufacture of liquid invertase. Nippon Shokanin Kogyo Gakkaishi 13(1): 1–7.

    Article  Google Scholar 

  • Peppier, H. J. 1965. Amino acid composition of yeast grown on different spent sulfite liquors. J. Agric. Food. Chem. 13:34–36.

    Article  Google Scholar 

  • Phaff, H. J. 1971. Structure and biosynthesis of the yeast cell envelope. In The Yeasts, vol. 2, A. H. Rose and J. J. Harrison (eds.). Academic Press, New York, pp. 135–210.

    Google Scholar 

  • Reed, G. and H. J. Peppier. 1973. Feed and food yeast. In Yeast Technology. AVI Publishing Co., Westport, Conn., pp. 328–351.

    Google Scholar 

  • Robbins, E. A. 1976. Manufacture of yeast protein isolate having a reduced nucleic acid content by a thermal process, U.S. Patent 3,991,215.

    Google Scholar 

  • Robbins, E. A., and R. D. Seeley. 1981. Process for the prevention and reduction of elevated blood cholesterol and triglyceride levels, U.S. Patent 4,251,519.

    Google Scholar 

  • Roberts, C., A. T. Ganesan, and W. Haupt. 1959. Genetics of melibiose fermentation in Saccharomyces italicus var. melibiosi. Heredity 13:499–517.

    Article  Google Scholar 

  • Saheki, T., and H. Holzer. 1975. Proteolytic activity in yeasts. Biochim. Biophys. Acta. 384:203–214.

    Google Scholar 

  • Sarko, A., H. C. Wu, C. T. Chuah. 1983. Multiple helical glucans. Biochem. Soc. Trans. 11:139–142.

    Google Scholar 

  • Schuster, L. 1957. Rye grass nucleases. J. Biol. Chem. 229:289–303.

    Google Scholar 

  • Sheets, R. M., and R. C. Dickson. 1981. LAC 4 is the structural gene for β-galactosidase in Kluyveromyces lactis. Genetics 98:729–745.

    Google Scholar 

  • Shimazono, H. 1964. Distribution of 5′-ribonucleatides in foods and their application to foods. Food Technol. 18:294–303.

    Google Scholar 

  • Sidoti, D. R., G. M. Landgraph, and R. A. Khalifa. 1973. Functional properties of baker’s yeast glycan. Presented at the 33rd Annual Meeting of the Institute of Food Technologists, Miami, Florida. Jan. 6–14.

    Google Scholar 

  • Sotskaya, V. P., V. A. Smirnov, and L. Y. Tikhomirov. 1965. Precipitation of invertase from yeast autolysates with ammonium sulfate. Izv. Vyssh. Ucheb. Zavedenii. Pischevaya Tekhnol. 6:38–42.

    Google Scholar 

  • Sperti, G. 1943. Toilet preparation, U.S. Patent 2,320,478.

    Google Scholar 

  • Stimpson, E. G. 1954. Drying of yeast to inactivate zymase and preserve lactase, U.S. Patent 2,693,440.

    Google Scholar 

  • Takei, S., S. Amao, T. Endo, K. Ishibashi, and T. Ito. 1967. A simplified method for the manufacture of yeast invertase. Ann. Sankyo. Res. Lab. 19:81–85.

    Google Scholar 

  • Tannenbaum, S. R., A. J. Sinskey, and S. B. Maul. 1973. Process of reducing the nucleic acid content in yeast, U.S. Patent 3,720,583.

    Google Scholar 

  • Tarantino, A. L., T. H. Plummer, and F. Miley. 1974. The release of intact oligosaccharides from specific glycoproteins by endo-β-N-acetyl glucosaminidase H. J. Biol. Chem. 249:818–824.

    Google Scholar 

  • Torii, K., and R. H. Cagan. 1980. Biochemical studies of taste sensation. IX. Enhancement of L-(3H) glutamate binding to bovine taste papillae by 5′-ribonucleotides. Biochim. Biophys. Acta. 627:313.

    Article  Google Scholar 

  • Torii, K., T. Mimura, and Y. Yugari, 1986. Effect of dietary protein on the taste preference for amino acids in rats. In Interaction of the Chemical Senses with Nutrition. Academic Press, New York, p. 45.

    Google Scholar 

  • von Borstel, R. C. 1969. Yeast genetics supplement. Mol. Genet. Bull. 31:1–28.

    Google Scholar 

  • Wahlstrom, V. L., and K. C. Fugelsang. 1987. Utilization of Yeast Hulls in Wine Making Observed. Research Bulletin. California State University, Fresno, pp. 1–5.

    Google Scholar 

  • Yamaguchi, S. 1987. Fundamental properties of umami in human taste sensation. In Umami: A Basic Taste, Y. Kawamura and M. R. Kare (eds.). 1st Edition. Marcel Dekker, Inc., New York, p. 41.

    Google Scholar 

  • Young, H., and R. P. Healy. 1957. Production of Saccharomyces fragilis with an optimum yield of lactase, U.S. Patent 2,776,928.

    Google Scholar 

  • Ziemba, J. V. 1967. Tailored hydrolysates, how made, how used. Food Eng. 19(1):82–85.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1991 Van Nostrand Reinhold

About this chapter

Cite this chapter

Reed, G., Nagodawithana, T.W. (1991). Yeast-Derived Products. In: Yeast Technology. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-9771-7_9

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-9771-7_9

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-011-9773-1

  • Online ISBN: 978-94-011-9771-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics