Skip to main content

Yeast Genetics

  • Chapter
Yeast Technology

Abstract

Although yeasts were used for baking, brewing, and wine making since the dawn of civilization, their existence was not known until the discovery of the tiny “animalcules” by van Leeuwenhoek in 1680. The role of yeast as a fermenting agent was later recognized by Louis Pasteur in 1866. These studies concluded that viable yeast cells cause fermentation under anaerobic conditions during which the sugar in the medium is converted to carbon dioxide and ethanol. With these findings, the role of yeast in industrial fermentations began to unfold.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Anand, J. G, and A. D. Brown. 1968. Growth rate patterns of the so-called osmophillic yeasts in solution of polyethylene glycol. J. Gen. Microbiol. 52:205–212.

    Google Scholar 

  • Anderson, E., and P. A. Margin. 1975. Sporulation and mating of brewer’s yeast. J. Inst. Brew. 81:242–247.

    Google Scholar 

  • Bevan, E. A., and M. Markower. 1963. The physiological basis of the killer character in yeast. Int. Congr. Genet. 11th Proc. 1:202–203.

    Google Scholar 

  • Bostian K. A., C. Jayachandran, S. and D. J. Tipper. 1983. A glycosylated protoxin in killer yeast: Models for its structure and and maturation. Cell. 32:169–180.

    Google Scholar 

  • Botstein, D., and R. W. Davis. 1982. Principles and practice of recombinant DNA research with yeast. In The Molecular Biology of the Yeast Saccharomyces: Metabolism and Gene Expression, J. N. Strathern, E. W. Jones, and J. R. Broach (eds.). Cold Spring Harbor Laboratories, New York, pp. 607–636.

    Google Scholar 

  • Bridges, B. A. 1976. Mutation induction. In Second International Symposium and Genetics of Industrial Microbiology, K. D. MacDonald (ed.). Academic Press, New York, pp. 7–14.

    Google Scholar 

  • Brown, A. D. 1974. Microbial water relations: Features of the intracellular composition of sugar-tolerant yeasts. J. Bacteriol. 118:769–777.

    Google Scholar 

  • Brown, A. D., and M. Edgley. 1980. Osmoregulation in yeast. In Genetic Engineering of Osmoregulation, D. W. Rains, R. C. Valentine, and A. Hollander (eds.). Plenum Press, New York, pp. 75–90.

    Google Scholar 

  • Brown, A. D., and J. R. Simpson. 1972. Water relations of sugar-tolerant yeasts: The role of intracellular polyols. J. Gen. Microbiol. 72:589–591.

    Google Scholar 

  • Bruinsma, B., and T. W. Nagodawithana. 1987. Comparison of S. cerevisiae and K. fragilis in gas production, dough rheology and bread making. Unpublished data.

    Google Scholar 

  • Burrows, S. 1979. Baker’s yeast. Microbial mass. In Economic Microbiology, vol. 4, A. H. Rose (ed.). Academic Press, New York, pp. 31–64.

    Google Scholar 

  • Burrows, S., and R. R. Fowell. 1961a. Improvement in yeast. British Patent 868,621.

    Google Scholar 

  • Burrows, S., and R. R. Fowell. 1961b. Improvement in yeast. British Patent 868,633.

    Google Scholar 

  • Bussey, H. 1972. Effect of yeast killer factor on sensitive cells. Nature 235:73–75.

    Google Scholar 

  • Bussey, H., T. Vernet, and A. M. Sdicu. 1987. Mutual antagonism among killer yeasts: Competition between K1 and K2 killers and a novel cDNA based K1-K2 killer strains of S. cerevisiae. Can. J. Microbiol. 34:38–44.

    Google Scholar 

  • Carlson, M., B. C. Osmond, and D. Botstein. 1981. SUC genes of yeast: A dispersed gene family. In Cold Spring Harbor Symp. Quant. Biol. 45:799–812.

    Google Scholar 

  • Clement, P., and A. L. Hennette. 1982. Strains of yeast for bread making and novel strains of yeast thus prepared. U.S. Patent 4,318,930.

    Google Scholar 

  • Crowe, J. H., L. M. Crowe, and D. Chapman. 1984. Preservation of membranes in anhydrobiotic organisms: The role of trehalose. Science 223:701–703.

    Google Scholar 

  • Dahl, H. H., R. A. Flavell, and F. G. Grosveld. 1981. The use of genomic libraries for the isolation and study of eucaryotic genes. In Genetic Engineering 2, R. Williamson (ed.). Academic Press, London, pp. 49–63.

    Google Scholar 

  • Dawes, I. W. 1983. Genetic control and gene expression during meiosis and sporulation in Saccharomyces cerevisiae. In Yeast Genetics, J. F. T Spencer, D. M. Spencer, and A. R. W. Smith (eds.). Springer-Verlag, New York, pp. 29–64.

    Google Scholar 

  • de Oliveira, D. E., E. C. C. Rodrigues, J. R. Mattoon, and A. D. Panek. 1981. Relationship between trehalose metabolism and maltose utilization in S. cerevisiae. II. Effect of constitutive MAL genes. Genetics 3:235–242.

    Google Scholar 

  • Dickson, R. C., R. M. Scheetz, and L. R. Lacy. 1981. Genetic regulation of yeast mutants constitutive for β-galactosidase mRNA. Mol. Cell. Biol. 1:1048–1056.

    Google Scholar 

  • Dickson, R. C., and K. Sreekrishna. 1986. LAC+ Saccharomyces cerevisiae plasmids, production and use. Eur. Patent Appl. EP 0206571.

    Google Scholar 

  • Eddy, A. A., and D. H. Williamson. 1957. A method of isolating protoplasts for yeast. Nature 179:1252–1253.

    Google Scholar 

  • Erratt, J. A., and A. Nasim. 1986. Allelism within the DEX and STA gene families of Saccharomyces diastaticus. Mol. Gen. Genet. 202:255–256.

    Google Scholar 

  • Esposito, M. S., and R. E. Esposito. 1969. Genetic control of sporulation in Saccharomyces. I. The isolation of temperature sensitive sporulation deficient mutants. Genetics 61:79–89.

    Google Scholar 

  • Federoff, H. J., J. D. Cohen, T R. Eccleshall, R. B. Needleman, B. A. Buchferer, J. Glacalone, and J. Marmur. 1982. Isolation of a maltase structural gene from S. carlsbergensis. J. Bacteriol. 149:1064–1070.

    Google Scholar 

  • Fowell, R. R. 1970. Sporulation and hybridization of yeast. In The Yeasts, vol. 1, A. H. Rose and J. S. Harrison (eds.). Academic Press, New York, pp. 303–383.

    Google Scholar 

  • Fowell, R. R., and M. E. Moorse. 1960. Factors controlling the sporulation of yeasts. I. The presporulation phase. J. Appl. Bacteriol. 23:53–68.

    Google Scholar 

  • Gascon, S., and J. O. Lampen. 1968. Purification of the internal invertase of yeast. J. Biol. Chem. 243:1567–1572.

    Google Scholar 

  • Giesenschlag, J., and T. W. Nagodawithana. 1982. Effect of reserve carbohydrate on the stability of yeast. Unpublished data.

    Google Scholar 

  • Gilliland, R. B. 1956. Maltotriose fermentation in the species differentiation of Saccharomyces. Compt. Rend. Trav. Lab. Carlsberg. Ser. Physiol 26:139–148.

    Google Scholar 

  • Goodey, A. R., and R. S. Tubb. 1982. Genetic and biochemical analysis of the ability of S. cerevisiae to decarboxylate cinnamic acid. J. Gen. Microbiol. 128:2615–2620.

    Google Scholar 

  • Grossmann, M. K., and F. K. Zimmermann. 1979. The structural genes of internal invertases in S. cerevisiae. Mol. Gen. Genet. 175:223–229.

    Google Scholar 

  • Guerola N., J. L. Ingraham, and E. Cerda-Olmedo. 1971. Introduction of mutations by nitrosoguanidine. Nature 230:122–125.

    Google Scholar 

  • Gunge, N. 1966. Breeding of baker’s yeast: Determination of the ploidy and an attempt to improve practical properties (Japan). J. Genet. 41:203–214.

    Google Scholar 

  • Hinnen, A., J. B. Hicks, and G. R. Fink. 1978. Transformation of yeast. Proc. Natl. Acad. Sci. USA 75:1929–1933.

    Google Scholar 

  • Holzer, H. 1976. Catabolite inactivation in yeast. Trends Biochem. Sci. 1:178–180.

    Google Scholar 

  • Ito, H., Y. Fukuda, K. Murata, and A. Kimura. 1983. Transformation of intact yeast cells treated with alkali cations. J. Bacteriol. 153:163–168.

    Google Scholar 

  • Jacobson, G. K. 1981. Mutations. In Biotechnology, vol. 1, H.-J. Rehm and G. Reed (eds.). Verlag Chemie, Weinheim, pp. 280–304.

    Google Scholar 

  • Jacobson, G. K., S. O. Jolly. 1989. Yeasts, molds and algae. In Biotechnology, vol. 7b. H.-J. Rehm and G. Reed (eds.). Verlag Chemie, Weinheim, pp. 279–313.

    Google Scholar 

  • Jacobson, G. K., and N. B. Trivedi. 1986. Improved yeast strains, method of production and use in baking. U.S. Patent Appl. 818,852.

    Google Scholar 

  • Jacobson, G. K., and N. B. Trivedi. 1987. Yeast strains, method of production and use in baking. U.S. Patent 4,643,901.

    Google Scholar 

  • Johnston, J. R., and C. W. Lewis. 1974. Genetic analysis of flocculation and tetrad analysis of commercial brewing and baking strains. In Second Proceedings of the International Symposium on Genetics of Industrial Microorganisms, K. D. MacDonald (ed.). Academic Press, London, pp. 339–355.

    Google Scholar 

  • Johnston, J. R., and H. P. Reeder. 1983. Genetic control of flocculation. In Yeast Genetics, J. F. T Spencer, D. M. Spencer, and A. R. W. Smith (eds.), Springer-Verlag, New York. pp. 205–224.

    Google Scholar 

  • Kawai, M., and U. Kazuo. 1983. Doughs comprising alcohol resistant yeast. European Patent 78182.

    Google Scholar 

  • Kew, O. M., and H. C. Douglas. 1976. Genetic co-regulation of galactose and melibiose utilization Saccharomyces. J. Bacteriol 125:33–41.

    Google Scholar 

  • Khan, N. A., and N. R. Eaton. 1971. Genetic control of maltose fermentation in yeast. I. Strains producing high and low basal levels of enzymes. Mol. Gen. Genet. 112:317–322.

    Google Scholar 

  • Kielland-Brandt, M. C., T. Nilsson-Tillgrem, S. Holmberg, J. G. Litske Peterson, and B. A. Svenningsen. 1979. Transformation of yeast without the use of foreign DNA. Carlsberg Res. Commun. 44:77–87.

    Google Scholar 

  • Koninklijke Nederlandsche, Gist en Spiritusfabriek, N. V. 1965. British Patent 989,247.

    Google Scholar 

  • Kosikov, K. V, and A. A. Miedviedieva. 1976. Experimental increase in the osmophillic properties of yeast. Mikrobiologiya 45:327–328.

    Google Scholar 

  • Lacy, L. R., and R. C. Dickson. 1981. Transcriptional regulation of K. lactis β-galactosidase gene. Mol Cell Biol. 1:629–629–634.

    Google Scholar 

  • Lawley, P. D., and C. J. Thatcher. 1970. Methylation of deoxyribonucleic acid in cultured mammalian cells by N-methyl-N-nitro-N-nitroso-guanidine. Biochem. J. 116:693–707.

    Google Scholar 

  • Legmann, R., and P. Margolith. 1983. Interspecific protoplast fusion of S. cerevisiae and S. mellis. Eur. J. Appl. Microbiol Biotechnol. 18:320–322.

    Google Scholar 

  • Lehninger, A. L. 1975. Biochemistry, 2nd ed. Worth Publishers, New York.

    Google Scholar 

  • Lewis, C. W., J. R. Johnston, and P. A. Martin. 1976. The genetics of yeast flocculation. J. Inst. Brew. 82:158–160.

    Google Scholar 

  • Liljestrom-Suominen, P. L., V. Joutsjoki, and M. Korhola. 1988. Construction of stable α-galactosidase-producing baker’s yeast strain. Appl. Environ. Microbiol. 54:245–249.

    Google Scholar 

  • Lindegren, C. C. 1949. The Yeast Cell. Its Genetics and Cytology. Education Publishing, St. Louis, pp. 2–8.

    Google Scholar 

  • Lindegren, C. C., and G. Lindegren. 1943. Selecting, inbreeding, recombining and hybridizing commercial yeasts. J. Bacteriol. 46:405–419.

    Google Scholar 

  • Lodder, J., B. Khoudokormoff, and A. Langejan. 1969. Melibiose fermenting baker’s yeast hybrids. Antonio van Leeuwenhoek Yeast Symposium 35:F9.

    Google Scholar 

  • Lorenz, K. 1974. Frozen dough. Bakers Digest 4:14–22.

    Google Scholar 

  • Maule, A. P., and P. D. Thomas. 1973. Strains of yeast lethal to brewery yeast. J. Inst. Brew. 79:137–141.

    Google Scholar 

  • Mazur, P. 1970. Cryobiology: The freezing of biological systems. Science 168:939–949.

    Google Scholar 

  • Mazur, P., and J. J. Schmidt. 1968. Interaction of cooling velocity, temperature, and warming velocity on survival of frozen and thawed yeast. Cryobiology 5:1–17.

    Google Scholar 

  • Middelbeck, E. J., J. M. H. Hermans, C. Stumm, and H. L. Muytjens. 1980. High incidence of sensitivity in yeast killer toxins among Candida and Tropicales isolates of human origin. Antimicrob. Agents Chemother. 17:350–354.

    Google Scholar 

  • Mortimer, R. K., and J. R. Johnston. 1986. Genealogy of principal strains of the yeast genetic stock center. Genetics 113:35–43.

    Google Scholar 

  • Nagodawithana, T. W. 1986. Yeasts: Their role in modified cereal fermentations. In Advances in Cereal Science and Technology, vol. 8, Y. Pomeranz (ed.). American Association of Cereal Chemists, St. Paul, Minn., pp. 15–104.

    Google Scholar 

  • Nagodawithana, T W., and N. Trivedi. 1990. Yeast selection for baking. In Yeast Strain Selection. C. J. Panchel (ed.). Marcel Dekker, New York.

    Google Scholar 

  • Nakatomi, Y., H. Saito, A. Nagashima, and F. Umeda. 1985. Saccharomyces sp. FD 612 and the utilization thereof in bread production. U.S. Patent 4,547,374.

    Google Scholar 

  • Naumov, G. I. 1971. Comparative genetics in yeast. V. Complementation in the MAL gene in S. cerevisiae which do not utilize maltose. Genetika 7:141–148.

    Google Scholar 

  • Naumov, G. I. 1976. Comparative genetics of yeast. XVI. Genes for maltose fermentation in S. carlsbergensis. Genetika 12:87–100.

    Google Scholar 

  • Needleman, R. B., and C. A. Michels. 1983. A repeated family of genes controlling maltose fermentation is S. carlsbergensis. Mol. Cell. Biol. 3:796–802.

    Google Scholar 

  • Needleman, R. B., D. B. Kaback, R. A. Dubin, E. L. Perkin, N. A. Rosenberg, K. A. Southerland, D. B. Forrest, and C. A. Michels. 1984. MAL 6 of Saccharomyces: A complex genetic locus containing three genes required for maltose fermentation. Proc. Natl. Acad. Sci. USA 81:2811–2815.

    Google Scholar 

  • Onishi, H. 1963. Osmophilic yeasts. Adv. Ed. Res. 12:53–94.

    Google Scholar 

  • Oura, E., H. Suomalainen, and E. Parkkinen. 1974. Changes in commercial baker’s yeast during its ripening period. Fourth Intl. Symp. Proc. on Yeast B25:125–126.

    Google Scholar 

  • Palfrey, R. G. E., and H. Bussey. 1979. Yeast killer toxin: Purification and characterization of the protein toxin from Saccharomyces cerevisiae. Eur. J. Biochem. 93:487–493.

    Google Scholar 

  • Panchel, C. J., I. Russell, A. M. Stills, and G. G. Stewart. 1984. Genetic manipulation of brewing and related yeast strains. Food Technol. 38:99–106.

    Google Scholar 

  • Panek, A. D., A. L. Sampaio, G. C. Braz, S. V. Baker, and J. R. Mottoon. 1979. Genetic and metabolic control of trehalose and glycogen synthesis. New relationship between energy reserves, catabolite repression and maltose utilization. Cell. Mol. Biol. 25:345–354.

    Google Scholar 

  • Post-Beittenmiller, M. A., R. W. Hamilton, and J. E. Hopper. 1984. Regulation of basal and induced levels of the MEL 1 transcript in S. cerevisiae. Mol. Cell. Biol. 4:1238–1245.

    Google Scholar 

  • Ruohola, H., P. Liljestrom, T. Torkkeli, H. Kopu, P. Leitinen, N. Kalkkuben, and M. Korhola. 1986. Expression and regulation of the yeast MEL 1 gene. FEMS Microbiol. Lett. 34:179–185.

    Google Scholar 

  • Russell, L, and G. G. Stewart. 1979. Spheroplast from brewer’s yeast strains. J. Inst. Brew. 85:95–98.

    Google Scholar 

  • Russell I., G. G. Stewart, H. P. Reader, J. R. Johnston, and P. A. Martin. 1980. Revised nomenclature of genes that control yeast flocculation. J. Inst. Brew. 86:120–121.

    Google Scholar 

  • Schnettler, R., U. Zimmermann, and C. C. Emeris. 1984. Large scale production of yeast hybrids by electrofusion. FEMS Microbiol. Lett. 24:81–85.

    Google Scholar 

  • Sheetz, R. M., and R. C. Dickson. 1981. LAC 4 is the structural gene for β-galactosidase in Kluyveromyces lactis. Genetics 98:729–745.

    Google Scholar 

  • Singer, B. 1975. The chemical effects of nucleic acid alkylation and their relation to mutagenesis and carcinogenesis. Prog. Nuc. Acid. Res, Mol. Biol. 15:219–284.

    Google Scholar 

  • Sklar, R., and B. Strauss. 1980. Role of UVrE gene product and of inducible O6-methylguanine removal in the induction of mutation by N-methyl-N′-nitro-N-nitrosoguanidine in E. coli. J. Mol. Biol. 143:343–362.

    Google Scholar 

  • Snow, R. 1979. Towards genetic improvement of wine yeast. Am. J. Enol. Vitc. 30:33–37.

    Google Scholar 

  • Spencer, J. F. T., and D. M. Spencer. 1983. Genetic improvement of industrial yeasts. Ann. Rev. Microbiol. 37:121–142.

    Google Scholar 

  • Spencer, J. F. T., D. M. Spencer, C. Bizeau, A. V. Martini, and A. Martini. 1985. The use of mitochondrial mutants in hybridization of industrial yeast strains. Curr. Genet. 9:623–625.

    Google Scholar 

  • Sprague, G. F, L. C. Blair, and J. Thorner. 1983. Cell interactions and regulation of cell type in the yeast S. cerevisiae. Ann. Rev. Microbiol. 37:623–660.

    Google Scholar 

  • Sreekrishna, K., and R. C. Dickson. 1985. Construction of strains of S. cerevisiae that grow on lactose. Proc. Natl. Acad. Sci. USA 82:7909–7913.

    Google Scholar 

  • Stanier, R. Y., M. Doudoroff, and E. A. Adelberg. 1970. The Microbial World, 3rd ed. Prentice-Hall, Englewood Cliffs, N.J.

    Google Scholar 

  • Stewart, G. G. 1981. Genetic manipulation of industrial yeast strains. Can. J. Microbiol. 27:973–990.

    Google Scholar 

  • Stewart, G. G., J. E. Goring, and J. Russell. 1977. Can a genetically manipulated yeast strain produce palatable beer? J. Am. Soc. Brew. Chem. 35:168–178.

    Google Scholar 

  • Stewart, G. G., and I. Russell. 1977. The identification, characterization and mapping of a gene for flocculation in Saccharomyces sp. Can. J. Microbiol 23:441–447.

    Google Scholar 

  • Stewart, G. G., and I. Russell. 1981. Yeast Flocculation in Brewing Science, vol. 2, J. R. A. Pollock (ed.). Academic Press, London, pp. 61–92.

    Google Scholar 

  • Stewart, G. G., I. Russell, and C. Panchal. 1983. Current developments on the genetic manipulation in brewing yeast strains. A Review. J. Inst. Brew. 89:170–188.

    Google Scholar 

  • Stiles, J. J., L. Clark, C. Hsiao, J. Carbon, and J. R. Broach. 1983. Cloning of genes into yeast cell. In Methods in Enzymology—Recombinant DNA, vol. 101, R. Wu, L. Grossman, and K. Moldave (eds.). Academic Press, New York, pp. 290–325.

    Google Scholar 

  • Sumner-Smith, M., R. P. Bozzato, N. Skipper, R. W. Davies, and J. E. Hopper. 1985. Analysis of inducible MEL 1 gene of S. carlsbergensis and its secreted products, alpha-galactosidase (melibiase). Gene 36:333–340.

    Google Scholar 

  • Tamaki, H. 1978. Genetic studies of ability to ferment starch in Saccharomyces: Gene polymorphism. Mol. Gen. Genet. 164:205–209.

    Google Scholar 

  • ten Berge, A. M. A., G. Zoutenelle, and K. W. van de Poll. 1973. Regulation of maltose fermentation in S. carlsbergensis. I. The function of the gene MAL 6 is recognized by MAL 6 mutants. Mol. Gen. Genet. 123:233–246.

    Google Scholar 

  • Thomas, D. Y., N. A. Skipper, P. C.K. Lou, S. Lolle, and H. Bussey. 1987. Production and secretion of proteins and polypeptides in yeast. Can. Patent 479062.

    Google Scholar 

  • Thorne, R. S. W. 1951. Some aspects of yeast flocculence. 3rd Eur. Brew. Conv. Proc. Congr. Brighton, Elsevier, Amsterdam, pp. 21–34.

    Google Scholar 

  • Thorne, R. S. W. 1968. Some observations on yeast mutation during continuous fermentation. J. Inst. Brew. 74:516–524.

    Google Scholar 

  • Thorne, R. S. W. 1790. Pure yeast cultures in brewing. Process Biochem. 4:15–16.

    Google Scholar 

  • Trivedi, N. B., G. K. Jacobson, and W. Tesch. 1986. Baker’s yeast. In CRC Critical Reviews in Biotechnology, vol. 24, issue 1, G. G. Stewart and I. Russell (eds.). CRC Press, Boca Raton, Fla., pp. 75–109.

    Google Scholar 

  • van Solingen, P., and J. B. van der Plaat. 1977. Fusion of yeast spheroplasts. J. Bacteriol. 130:946–947.

    Google Scholar 

  • von Borstel, R. C., and R. D. Mehta. 1976. Mutation and selection systems for yeast. In Microbiology. D. Schlessinger (ed.). American Society of Microbiology, Washington, D.C., pp. 507–509.

    Google Scholar 

  • Watson, K., H. Arthur, and W A. Shipton. 1976. Leucosporidium yeasts: Obligate psychrophiles which alter membrane-lipid and cytochrome composition with temperature. J. Gen. Microbiol 97:11–18.

    Google Scholar 

  • Wickner, R. B. 1976. Killer of S. cerevisiae: A double stranded ribonucleic acid plasmid. Bacteriol Rev. 40:757–773.

    Google Scholar 

  • Windisch, S., S. Kowalski, and I. Zander. 1976. Dough raising tests with hybrid yeast. Eur. J. Appl. Microbiol. 3:213–221.

    Google Scholar 

  • Winge, O. 1935. On haplophase and diplophase in some Saccharomyces. C. R. Trav. Lab. Carhberg Ser. Physiol. 21:77–112.

    Google Scholar 

  • Winge, O., and O. Laustsen. 1937. On two types of spore germination and on genetic segregation of Saccharomyces demonstrated through single spore cultures. C. R. Trav. Lab. Carlsberg Ser. Physiol. 22:99–117.

    Google Scholar 

  • Winge, O., and O. Laustsen. 1938. Artificial species hybridization in yeast. C.R. Trav. Lab. Carhberg Ser. Physiol. 22:235–247.

    Google Scholar 

  • Winge, O., and C. Roberts. 1948. Inheritance of enzymatic character in yeast and the phenomenon of long term adaptation. C.R. Trav. Lab. Carlsberg Ser. Physiol. 24:263–315.

    Google Scholar 

  • Winge, O., and C. Roberts. 1950. The polymeric genes for maltose fermentation in yeasts and their mutability. C.R. Trav. Lab. Carlsberg Ser. Physiol. 25:36.

    Google Scholar 

  • Winge, O., and C. Roberts. 1956. Complementary action of melibiase and galactozymase on raffinose fermentation. Nature 177:383–384.

    Google Scholar 

  • Wray, L. A., M. M. Witte, R. C. Dickson, and M. I. Riley. 1987. Characterization of a positive regulatory gene LAC 9 that controls induction of the lactose-galactose regulon of K. lactis: Structural and functional relationships to GAL 4 of S. cerevisiae. Mol. Cell. Biol. 7:1111–1121.

    Google Scholar 

  • Yamashita, L, and S. Fukui. 1983. Mating signals control expression of both starch fermentation genes and novel flocculation gene FLO 8 in the yeast Saccharomyces. Agric. Biol. Chem. 12:2889–2896.

    Google Scholar 

  • Yocum, R. R. 1986. Genetic engineering of industrial yeasts. In Bio. Expo. 86 Proceedings. Butterworth Publishers, Stoneham, Mass., pp. 171–180.

    Google Scholar 

  • Yocum, R. R., and S. Hanley. 1987. Genetically engineered lactose utilizing yeast strains. British Patent Appl. GB 2178431A.

    Google Scholar 

  • Young, T. W. 1981. The genetic manipulation of killer character into brewer’s yeast. J. Inst. Brew. 87:292–295.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1991 Van Nostrand Reinhold

About this chapter

Cite this chapter

Reed, G., Nagodawithana, T.W. (1991). Yeast Genetics. In: Yeast Technology. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-9771-7_3

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-9771-7_3

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-011-9773-1

  • Online ISBN: 978-94-011-9771-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics