Skip to main content

Abstract

For a long time explosive compaction was considered an unsuitable tool for industrial application. Usually powder compaction takes place in heavy equipment at very low loading rates. The very high loading rates during explosive compaction were difficult to control. On the other hand no data were available about the explosive’s parameters and their dependence on the method used and the type of powder to be compacted.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. La Rocca, E. W. and Pearson, J. Rev. Sci. Instr., 29 (1958), 848.

    Article  ADS  Google Scholar 

  2. La Rocca, E. W. and Pearson, J. US Patent 2,948,923, June 4, 1958.

    Google Scholar 

  3. Stein, E. M., Van Orsdel, J. R. and Schneider, P. V. Metal Progress, 83 (April 1964), No. 4, 83.

    Google Scholar 

  4. Brejcha, R. J. and Mcgee, S. W. American Machinist, 106 (1962), 63–65.

    Google Scholar 

  5. Hagemeyer, J. W. and Regalbuto, J. A. International Journal of Powder Metallurgy, 4 (1968) No. 3, 19; see also vol. I of the Institute of Metals (1971), 209.

    Google Scholar 

  6. Raybould, D. 15th Int. MTDR Conf., Macmillan, London, 1975.

    Google Scholar 

  7. McKenna, P. M., Redmond, J. C. and Smith, E. N. US Patent 2,648,125.

    Google Scholar 

  8. Porembka, S. W. and Simons, C. C. Powder Metallurgy, 6 (1960), 125.

    Google Scholar 

  9. Montgomery, W. T. and Thomas, H. Powder Metallurgy (1960), No 6, 125.

    Google Scholar 

  10. Pearson, J. High energy rate forming, ASTME SP, 60–150, Dec. 1961.

    Google Scholar 

  11. Paprocki, S. J., Simons, C. and Carlson, R. J. Advanced high energy rate forming II,Astme SP, 62–29, 1962.

    Google Scholar 

  12. Liebermann, L, Knop, L. H. and Zernow, L. High energy rate forming, ASTME SP, 23–29, 1963.

    Google Scholar 

  13. Rinehart, J. S. and Pearson, J. Explosive Working of Metals, 1963, Pergamon Press, Oxford, London, New York.

    Google Scholar 

  14. Leonard, R. W. Battelle Techn. Review 17 (1968), No. 10, 13.

    Google Scholar 

  15. Deribas, A. A. et al. Fizika Gorenija i Vzryva 9 (1973), 883.

    Google Scholar 

  16. Rankine, W. J. M. Phil. Trans. Roy. Soc., London, 160 (1870).

    Google Scholar 

  17. Hugoniot, H. J. ecole polytech, 58 (1889).

    Google Scholar 

  18. Meyers, M. A. Proc. 5th Int. Conf HERE, University of Denver, Colorado, June 1975.

    Google Scholar 

  19. Butcher, B. M. and Karnes, C H. J. appl. Phys., 40, No. 7 (1969), 2967.

    Article  ADS  Google Scholar 

  20. Butcher, B. M., Carroll, M. M. and Holt, A. C. J. appl. Phys., 45, No. 9 (1974), 3864.

    Article  ADS  Google Scholar 

  21. Boade, R. R. J. appl. Phys., 39, No. 3 (1968), 1609.

    Article  ADS  Google Scholar 

  22. Boade, R. R. J. appl. Phys., 39, No. 12 (1968), 5693.

    Article  ADS  Google Scholar 

  23. Boade, R. R. J. appl. Phys., 40, No. 9 (1969), 3781.

    Article  ADS  Google Scholar 

  24. Hermann, W. J. appl. Phys., 40, No. 6 (1969), 2490.

    Article  ADS  Google Scholar 

  25. Walsh, I. M. and Rice, H. M. J. Chem. Phys., 26 (1957), 815.

    Article  ADS  Google Scholar 

  26. Hollenberg, K. and Miller, F. BMVg WT12–3 (1971).

    Google Scholar 

  27. Leonard, R. W., Laber, D., Linse, V. D. Proc. 2nd Int. Conf HERE, Estes Park, Co., USA, 1969.

    Google Scholar 

  28. Prümmer, R. Ber. Deutsche Keramische Gesellschaft 50 (1973), 75. See also Proc. 4th Int. Conf HERE, Estes Park, Co., USA, 1973.

    Google Scholar 

  29. Deribas, A. A. and Staver, A. M. Eizika Gorenija i Vzryva, 10 (1974), 568.

    Google Scholar 

  30. Staver, A. M. In Shock Waves and High Strain Rate Phenomena in Metals, eds. M. A. Meyers and L. E. Murr, Plenum Press, New York and London, 1981. See also Proc. 4th Intl. Conf HERE (1975), Denver, Co., USA.

    Google Scholar 

  31. Montgomery, W. T. and Thomas, H. Powder Metallurgy (1960), No. 6, 125.

    Google Scholar 

  32. Paprocki, S. J. et al Paper Nr. SPA 2–29, Creative Manufacturing Seminars, Detroit: ASTME (1961/62).

    Google Scholar 

  33. Strohecker, D. E. High velocity compaction of metal powders, in High Energy Rate Working of Metals, Oslo: Central Inst. Ind. Res. (1964), 481.

    Google Scholar 

  34. Laber, R. W. Batelle Techn. Rev., Nov/Dec. (1968), 13.

    Google Scholar 

  35. Deribas, A. A. and Stayer, A. M. Fizika Gorenija i Vzryva, 10 (1974), No. 4, 568.

    Google Scholar 

  36. Lennon, A. R. C., Balla, A. K. and Williams, J. D. Proc. 6th. Int. Conf. HERF, Sept. 1977, Essen, Germany.

    Google Scholar 

  37. Mikhailov, A. N. and Dremin, A. N. Fizika Gorenija i Vzryva 13 (1977), No. 1, 115.

    Google Scholar 

  38. Prümmer, R. and Ziegler, G. Proc. 5th Intl. Conf. on High Energy Rate Fabrication, 1975, Denver, Colorado, USA. See also: Powders Metallurgy International No. 1 (1977), 14.

    Google Scholar 

  39. Prümmer, R. and Ziegler, G. Proc. 6th Intl. Conf on High Energy Rate Fabrication, 1977, Essen, Germany.

    Google Scholar 

  40. Prümmer, R. Proc. 6th AI RAPT Conf. High Pressure Science and Technology, eds. K. D. Timmerhaus and M. S. Barber (1979), Plenum Press, New York, p. 814.

    Google Scholar 

  41. Prümmer, R. Germ. Pat. No. 2436951 (1974).

    Google Scholar 

  42. Roman, O. V. and Gorobtsov, V. G. Int. J. Powder Metallurgy and Powder Technology 11 (1975) 55.

    Google Scholar 

  43. Roman, O. V. In Shock Waves and High Strain Rate Phenomena in Metals, Meyers, M. A. and Murr, L. E. eds., 1981, Plenum Press, New York.

    Google Scholar 

  44. Mcqueen, R. J. and Marsh, S. P. J. appl. Phys., 31 (1960), 1253.

    Article  ADS  Google Scholar 

  45. Walsh, J. M. and Christian, R. H. Phys. Rev., 97 (1955), No. 6,1544.

    Article  ADS  Google Scholar 

  46. Atroshenko, E. S. and Kosovich, V. A.Technologija Masinostroenija (Russ.) (1971), 67.

    Google Scholar 

  47. Krupnikov, K. K., Brazhnik, M. I. and Krupnikova, V. P. Soviet Physics JETP 15 (1962), No. 3, 470.

    Google Scholar 

  48. Pikus, I. M. and Roman, O. V. Fizika Gorenija i Vzryva, 10 (1974), 10, 782.

    Google Scholar 

  49. Kunin, N. f., Yurchenko, B. D. and Ovichinnikov, O. P. Poroshkovaja Metallurgija, 10 (1971), 106, 19.

    Google Scholar 

  50. Batsanov, S. S. In Preparative Methods in Solid State Chemistry, Academic Press Inc., New York, London (1972), pp. 133–146.

    Google Scholar 

  51. Beljakov, G. v., Livshits, L. D. and Rodionov, V. N. Izv. Earth Physics, 10, (1974), 92–94.

    Google Scholar 

  52. Nesterenko, V. E. Dissertation Novosibirsk, 1974.

    Google Scholar 

  53. Kimura, Y. Japan J. of Appl. Phys., 2 (1963), 312.

    Article  ADS  Google Scholar 

  54. Horiguchi, Y. and Nomura, Y. Bull. Chem. Soc. Japan 36 (1963), 486.

    Article  Google Scholar 

  55. Horiguchi, Y. and Nomura, Y. J. Less-Common Metals, 11 (1966), 378.

    Article  Google Scholar 

  56. Horiguchi, Y., Nomura, Y. and Katajama, S. Kogyo Kogaku Zassi 69 (1966), 1007.

    Article  Google Scholar 

  57. Batsanov, S. S. and Zolotova, E. S. Dokl. Akad. Nauk SSR 180 (1968), 93.

    Google Scholar 

  58. Batsanov, S. S. et al. Dokl. Akad. Nauk SSR 185 (1969), 330.

    Google Scholar 

  59. Batsanov, S. S. et al. Phys. Gorenija Vzryva, 5 (1969), 283.

    Google Scholar 

  60. Otto, G., Reece, O. Y. and Roy, U. Applied Physics Letters, 18 (1971), 418.

    Article  ADS  Google Scholar 

  61. Barski, I. M., Dikovskii, V. Y. and Matytsin, A. I. Fizika Gorenija i Vzriva, 8 (1972) 474.

    Google Scholar 

  62. Pan, V. M. et al IETP Lett., 21 (1975), No. 8, 228.

    ADS  Google Scholar 

  63. Dew-Hughes, D. and Linse, V. D. J. Appl Phys., 50 (1979), 3500.

    Article  ADS  Google Scholar 

  64. Deribas, A. A., Staver, A. M. Fizika Gorenija i Vzf-yva, 6 (1970), 122.

    Google Scholar 

  65. Deribas, A. A. et al Proc. Sympos. Behavior of Dense Media Under High Dynamic Pressures, 1967, Paris.

    Google Scholar 

  66. Batsanov, S. S. J. Struct. Chim., 11 (1970), 156.

    Google Scholar 

  67. De Carli, P. S. and Jamieson, J. C. Science, 133 (1961), 1821.

    Article  ADS  Google Scholar 

  68. De Carli, P. S. In Science and Technology of Industrial Diamonds ed. J. Burls, 1967, Industrial Diamond Information Bureau, London.

    Google Scholar 

  69. De Carli, P. S. US Patent 3238019 (1966).

    Google Scholar 

  70. Kiyoto, K. et al. J. Industrial Explosive Society Japan, 37 (1976), Nr. 3, 152.

    Google Scholar 

  71. Sekata, N. and Sekikawa, Y. J. of Materials Science, 16 (1981), 1730.

    Article  ADS  Google Scholar 

  72. Hanneman, R. E., Strong, H. M. and Bundy, F. P. Science, 155 (1967), 995.

    Article  ADS  Google Scholar 

  73. Ping-huang, S. et al. Proc. II Meeting on explosive working of materials, Novosibirsk, 1981.

    Google Scholar 

  74. Bergman, O. R. Proc. 7th Intl. Conf HERF, Leeds, England, 1981.

    Google Scholar 

  75. Balchan, a. S. and Cowan, G. R. US Patent 3851027 (1974).

    Google Scholar 

  76. Altshuler, L. V. Usp. Fiz Nauk, 85 (1965), 198.

    Google Scholar 

  77. Adadurov, G. A. and Aliez, Z. G. et al. Dokl. Akad. Nauk SSR, 172 (1967), 1066.

    Google Scholar 

  78. Johnson, Q. and Mitchell, A. C. Phys. Rev. Letters, 29 (1972), 1361.

    Google Scholar 

  79. Dulin, I. N. and Altshuler, L. V. et al. Fiz. Tverd. Tela, 11 (1969), 1262.

    Google Scholar 

  80. Coleburn, N. L. and Forbes, J. V.J. Chem. Phys., 48 (1968), 555.

    Article  ADS  Google Scholar 

  81. Batsanov, S. S. and Batsanova, L. R. et al. Zh. Strukt. Khim, 9 (1968), 1024.

    Google Scholar 

  82. Vereshtshagin, L. F., et al. German Patent claim 2 235 240.8 (1972).

    Google Scholar 

  83. Drjomin, A. N. et al. German Patent claim 22193948 (1972).

    Google Scholar 

  84. Mitomo, M. and Setaka, N. J. of Mat. Science-Letters, 16 (1981), 852.

    ADS  Google Scholar 

  85. Morris, D. G. Metal Science, July 1980, 215–220.

    Google Scholar 

  86. Roman, O. V. et al. Proc. 4th Intl. Conf. on Rapidly Quenched Metals, Sendai, Japan 1981.

    Google Scholar 

  87. Cline, C. F. Proc. 4th Intl. Conf on Rapidly Quenched Metals, Sendai, Japan 1981.

    Google Scholar 

  88. Belyakov, G. v., Livshits, L. D. and Rodinov, v. N. Izv. Earth Physics, 1974, No. 10, 92.

    Google Scholar 

  89. Prümmer, R.: J. Mat. Techn. 4 (1973), No. 5, 236.

    Google Scholar 

  90. Meyers, M. A., Gupta, B. B. and Murr, L. E. In Shock Waves and High Strain Rate Phenomena in Metals, eds. M. A. Meyers and L. E. Murr, 1981, Plenum Press, New York.

    Chapter  Google Scholar 

  91. Reybold, D. J. Mat. Sci., 16 (1981), 589.

    Article  ADS  Google Scholar 

  92. Blazynski, T. Z. and El-Sobky, H. Metals Technology, March 1980, 107.

    Google Scholar 

  93. Wolff, E. and Prümmer, R. Raumfahrtforsch, 17 (1973) 16.

    Google Scholar 

  94. Böhle, p. and Erdman-Jesnitzer, F. Aluminium, 44 (1968), 683.

    Google Scholar 

  95. Wittkowski, D. S. and Otto, H. Proc. 4th Intl. Conf. HERF (1973), Denver.

    Google Scholar 

  96. Horiguchi, Y. and Nomura, Y. Kogyo Kagaku Zassi, 68 (1965), 910.

    Article  Google Scholar 

  97. Klein, M. J., Rough, F. A. and Simons, C. C. J. Am. Ceram. Soc., 46 (1963), 356.

    Article  Google Scholar 

  98. Klein, M. J. and Rudman, P. S. Phil. Mag., 14 (1966), 1199.

    Article  ADS  Google Scholar 

  99. Bergman, O. R. and Barrington, J. J. Am. Ceram. Soc., 49 (1966), 502.

    Article  Google Scholar 

  100. Heckel, R. W. and Youngblood, J. L. J. Am. Ceram. Soc., 51 (1968), 398.

    Article  Google Scholar 

  101. Samsonov, G. V.Poroshkaya Metallurgiya, 109 (1972), 93.

    Google Scholar 

  102. Prümmer, R. and Ziegler, G. Proc. 7th Intl. Conf. HERF Sept. 1981, Leeds, England.

    Google Scholar 

  103. Hoenig, C. L. and Yust, C. S. Ceramic Bulletin, 60 (1981), 1175.

    Google Scholar 

  104. Prümmer, R. Europa industrie revue, 1 (1975), 23.

    Google Scholar 

  105. Boginski, L. Planseeberichte für Pulvermetallurgie, 17 (1969), 225.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1983 Applied Science Publishers Ltd

About this chapter

Cite this chapter

Prümmer, R. (1983). Powder Compaction. In: Blazynski, T.Z. (eds) Explosive Welding, Forming and Compaction. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-9751-9_10

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-9751-9_10

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-011-9753-3

  • Online ISBN: 978-94-011-9751-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics