Skip to main content

Introduction to High-Energy-Rate Metalworking

  • Chapter
Book cover Explosive Welding, Forming and Compaction
  • 449 Accesses

Abstract

A small underwater explosion forms a large, dish-shaped end closure for a tank car; a thin layer of explosive detonated over the surface of a railroad frog improves the mechanical properties of the high-manganese steel part; the simultaneous detonation of several strips of sheet explosive welds together components of dissimilar metals in the fabrication of a heat exchanger; and in a powder metallurgy process the shock pressures from an explosion produce a high-density preform. All of these examples are but a small sampling of the many and diverse operations now being performed in the industrial field of high-energy-rate metalworking where the constructive use of explosives is being applied in order to broaden the scope of manufacturing techniques, lower the costs, and shorten the lead time required in the production and fabrication of reliable metal parts.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Pearson, J. In Proc. Behavior and Utilization of Explosives in Engineering Design, 1972, ASME, Albuquerque, New Mexico, 69–84.

    Google Scholar 

  2. Bruno, E. J., Ed. High-Velocity Forming of Metals, Rev. Edn., 1968, ASTME, Dearborn, Michigan.

    Google Scholar 

  3. Jones, O. E. In Proc. Behavior and Utilization of Explosives in Engineering Design, 1972, ASME, Albuquerque, New Mexico, 125–148.

    Google Scholar 

  4. Rinehart, J. S., and Pearson, J. Behavior of Metals Under Impulsive Loads, 1954, Am. See. Metals, Cleveland, Ohio.

    Google Scholar 

  5. Shewman, P. G., and Zackay, V. F., Ed. Response of Metals to High Velocity Deformation, 1961, Interscience, New York.

    Google Scholar 

  6. Meyers, M. A., and Murr, L. E., Ed. Shock Waves and High-Strain-Rate Phenomena in Metals, 1981, Plenum, New York.

    Google Scholar 

  7. Adamson, D. J. Iron Steel Inst. (1878), 383.

    Google Scholar 

  8. Munroe, C. E. Scribners Magazine, 3 (1888), 563–567.

    Google Scholar 

  9. Hopkinson, J. Proc. Manchester Lit. and Phil Soc., II (1872), 40–45 and 119–121.

    Google Scholar 

  10. Hopkinson, B. Scientific Papers, 1921, Cambridge University Press, Cambridge.

    MATH  Google Scholar 

  11. Bridgman, p. W. The Physics of High Pressure, 1949, G. Bell and Sons, Ltd., London.

    Google Scholar 

  12. Foley, F. B., and Howell, S. P. Trans. AIME, 68 (1923), 891–915.

    Google Scholar 

  13. Taylor, J. Detonation in Condensed Explosives, 1952, Clarendon Press, Oxford.

    Google Scholar 

  14. Cook, M. A. The Science of High Explosives, 1958, Reinhold, New York.

    Google Scholar 

  15. Cole, R. H. Underwater Explosions, 1948, Princeton University Press, Princeton.

    Google Scholar 

  16. Stoner, R. G., and Bleakney, W. J. Appl. Phys., 19 (1948), 670–678.

    Article  ADS  Google Scholar 

  17. Kolsky, H. Stress Waves in Solids, 1953, The Clarendon Press, Oxford.

    MATH  Google Scholar 

  18. Davis, R. M. In Surveys in Mechanics, 1956, The University Press, Cambridge, 64–138.

    Google Scholar 

  19. Clark, D. S., and Wood, D. S. Trans. ASM, 42 (1950), 45–74.

    Google Scholar 

  20. Taylor, G. I. J. Inst. Civil Engrs., 26 (1946), 486–519.

    Google Scholar 

  21. Davis, R. M. Trans. Royal Society (London) 240A (1946–48), 375–457.

    Article  ADS  Google Scholar 

  22. Von Kärmän, T., and Duwez, P. J. Appl Phys., 21 (1950), 987–994.

    MathSciNet  Google Scholar 

  23. Harding, J., Ed. Mechanical Properties at High Rates of Strain 1979, 1980, Institute of Physics, London.

    Google Scholar 

  24. Rinehart, J. S., and Pearson, J. Explosive Working of Metals, 1963, Pergamon, London.

    Google Scholar 

  25. Ezra, A. A. Principles and Practices of Explosive Metalworking, 1973, Industrial Newspapers, London.

    Google Scholar 

  26. Noland, M. C., Gadberry, H. M., Loser, J. B. and Sneegas, E. G. High Velocity Metalworking, 1967, NASA, Washington, D.C.

    Google Scholar 

  27. Jue, L. S., and Giannoccolo, S. Marine Technology, 3 (1966), 99–105.

    Google Scholar 

  28. Steinicke, H. Presentation at the Int. Conf. on the Metallurgical Effects of High Strain-Rate Deformation and Fabrication, June 1980, TMS-AIME, Albuquerque, New Mexico.

    Google Scholar 

  29. Johnson, W. Impact Strength of Materials, 1972, Edward Arnold, London.

    MATH  Google Scholar 

  30. MacLeod, N. A. US Patent No. 2,703,297.

    Google Scholar 

  31. Harper, W. A. In High Energy Rate Working of Metals, Vol. 1, 1964, Central Inst, for Industrial Research, Oslo, 247–254.

    Google Scholar 

  32. Deribas, A. A. In Shock Waves and High-Strain-Rate Phenomena in Metals, 1981, Plenum, New York, 915–939.

    Book  Google Scholar 

  33. La Rocca, E. W., and Pearson, J. Rev. Sci. Inst., 29 (1958), 848–851.

    Article  ADS  Google Scholar 

  34. Pruemmer, R. A. In Proc. Fourth Int. Conf Center for High Energy Forming, 1973, University of Denver, Denver, Colorado, 9.2.1–9.2.27.

    Google Scholar 

  35. Stayer, A. M. In Proc. Fifth Int. Conf on High Energy Rate Fabrication, 1975, University of Denver, Denver, Colorado, 2.1.1–2.1.31.

    Google Scholar 

  36. Pearson, J. In Advanced High Energy Rate Forming, 1961, ASTME, Detroit, Michigan, SP60–159.

    Google Scholar 

  37. Cowan, G. R., and Holtzman, A. H. J. Appl. Phys., 34 (1963), 928–939.

    Article  ADS  Google Scholar 

  38. El-Sobky, H., and Blazynski, T. Z. In Proc. Fifth Int. Conf on High Energy Rate Fabrication, 1975, University of Denver, Denver, Colorado, 4.5.1–4.5.21.

    Google Scholar 

  39. Crossland, B. In Mechanical Properties at High Rates of Strain 1979, 1980, Institute of Physics, London, 394–409.

    Google Scholar 

  40. Carpenter, S. In Shock Waves and High-Strain-Rate Phenomena in Metals, 1981, Plenum, New York, 941–959.

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1983 Applied Science Publishers Ltd

About this chapter

Cite this chapter

Pearson, J. (1983). Introduction to High-Energy-Rate Metalworking. In: Blazynski, T.Z. (eds) Explosive Welding, Forming and Compaction. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-9751-9_1

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-9751-9_1

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-011-9753-3

  • Online ISBN: 978-94-011-9751-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics