Skip to main content

Photochemically Initiated Reactions of Substituted 1,3-Dioxolanes and 1, 3-Oxathiolanes in CFCI3

ESR Study and Mechanism of Ring-Fission

  • Chapter
Spin Trapping by Nitrosoalkanes
  • 42 Accesses

Abstract

The photochemical reactions of some 2-alkyl-l, 3-dioxolanes and 2-alkyl-l, 3-oxathiolanes in CFC13 in the presence of benzophenone yield exclusively the open 2-chloroethyl carboxylic esters and S-2-chloroethyl thio-carboxylic esters respectively. Photochemically excited benzophenone abstracts the hydrogen atom at carbon between the heteroatoms from the substrate to give intermediate cyclic (thio)acetal radicals which can be trapped efficiently by 2-nitroso-2-methylpropane in inert solvents. The resulting nitroxides are identified by their ESR hfs constants. No ring-opened (thio)ester radicals could be trapped. The course of photolysis of optically active 2RS, 4R-(—)-2-methyl-4-phenyl-1, 3-dioxolane and other (racemic) 2, 4-disubstituted-l, 3-dioxolanes supports a mechanism in which a cyclic radical abstracts halogen from the solvent to form an intermediate cyclic chloro-(thio)acetal. Heterolytic cleavage of the new C-Cl bond gives the well stabilized cyclic carbonium ion and chloride anion. Nucleo-philic attack of chloride ion at the C-4 or C-5 carbon atom (involving inversion for a chiral C-4) leads to ring rupture and formation of the final product.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. The contents of this chapter are nearly identical with a full paper: J. W. Hartgerink, L. C. J. van der Laan, J. B. F. N. Engberts and Th. J. de Boer, Tetrahedron 27, 4323 (1971).

    Article  Google Scholar 

  2. L. P. Kuhn and C. Wellman, J. Org. Chem. 22, 774 (1957).

    Article  Google Scholar 

  3. E. S. Huyser, J. Org. Chem. 25, 1820 (1960).

    Article  Google Scholar 

  4. E. S. Huyser and Z. Garcia, J. Org. Chem. 27, 2716 (1962).

    Article  Google Scholar 

  5. B. Maillard, M. Cazaux and R. Lalande, Bull. Soc. Chim. France 467 (1971).

    Google Scholar 

  6. P. Marche and D. Lefort, C. R. Acad. Sci. Paris, Ser. C 269, 717 (1969).

    Google Scholar 

  7. D. Elad and R. D. Youssefyeh, Tetrahedron Letters 2189 (1963).

    Google Scholar 

  8. I. Rosenthal and D. Elad, J. Org. Chem. 33, 805 (1968).

    Article  Google Scholar 

  9. H. E. Seyfarth, A. Hesse and H. Pastohr, Z. Chem. 9, 150 (1969).

    Article  Google Scholar 

  10. These free radical reactions must be carried out under nitrogen, because in the presence of oxygen mainly hydroperoxides are obtained; cf. ref. 9.

    Google Scholar 

  11. J. W. Hartgerink, J. B. F. N. Engberts, Th. A. J. W. Wajer and Th. J. de Boer, Rec. Trav. Chim. 88, 481 (1969).

    Article  Google Scholar 

  12. C. Lagercrantz and S. Forshult, Acta Chem. Scand. 23, 811 (1969).

    Article  Google Scholar 

  13. Formed by thermal decomposition of di-t-butyl peroxyoxalate (TBPO) at room temperature; cf. P. D. Bartlett, E. P. Benzing and R. E. Pincock, J. Amer. Chem. Soc. 82, 1762 (1960).

    Article  Google Scholar 

  14. The non-specific hydrogen abstraction from this compound has been noted before; cf. ref. 5.

    Google Scholar 

  15. A. Ohno and Y. Ohnishi, Tetrahedron Letters 4405 (1969).

    Google Scholar 

  16. A. Hudson and K. D. J. Root, Tetrahedron 25, 5311 (1969).

    Article  Google Scholar 

  17. A. J. Dobbs, B. C. Gilbert and R. O. C. Norman, Chem. Commun. 1353 (1969); idem, J. Chem. Soc. (A) 124 (1971).

    Google Scholar 

  18. R. O. C. Norman, Chem. in Brit. 6, 66 (1970).

    Google Scholar 

  19. The cyclopropyl carbinyl radical is stable at-150° and gives β-scission at —100° to form the allyl carbinyl radical; cf. J. K. Kochi, P. J. Krusic and D. R. Eaton, J. Amer. Chem. Soc. 91, 1877 (1969).

    Article  Google Scholar 

  20. D. C. Neckers, A. P. Schaap and J. Hardy, J. Amer. Chem. Soc. 88, 1265 (1966).

    Article  Google Scholar 

  21. J. C. Martin, J. E. Schultz and J. W. Timberlake, Tetrahedron Letters 4629 (1967).

    Google Scholar 

  22. All studies reported in the literature have been performed in hydrogen donating media, either the pure 1, 3-dioxolane itself or with an alcohol as the solvent.

    Google Scholar 

  23. No reaction occurred in the absence of benzophenone; benzpinacol was found as a byproduct.

    Google Scholar 

  24. The fate of the CFC12 radical thus produced remains uncertain. It may participate in the hydrogen abstraction reaction to form CHFC12 (b.p. 9°) or it dimerizes to C12FCCFC12 (b.p. 93°). A careful search has been made for these compounds (GLC analysis) and neither compound could be detected.

    Google Scholar 

  25. W. Baker and A. Shanon, J. Chem. Soc. 1598 (1933).

    Google Scholar 

  26. H. Bagans and L. Domaschke, Chem. Ber. 91, 653 (1958).

    Article  Google Scholar 

  27. A few open chloro-acetals have been prepared via other routes; cf. J. W. Scheeren, Tetrahedron Letters 5613 (1968).

    Google Scholar 

  28. H. Gross, J. Freiberg and B. Costisella, Chem. Ber. 101, 1250 (1968).

    Article  Google Scholar 

  29. Optically pure at chiral center C-4. In practice X is a mixture of diastereoisomers due to the other asymmetric center C-2. However, the configuration at C-2 is not relevant in the mechanism of the photolysis of X.

    Google Scholar 

  30. Only protonation of the O-3 oxygen atom is exemplified in this scheme.

    Google Scholar 

  31. Of course, our experimental data do not provide information about the details of the formation of XVI from XIV. However, the sequence depicted in scheme 4, i.e. chlorine abstraction from the solvent to give XV followed by ionization to XVI seems most plausible.

    Google Scholar 

  32. J. Gelas and S. Michaud, C. R. Acad. Sci. Paris, Ser. C 270, 1614 (1970).

    Google Scholar 

  33. C. C. Price and S. Oae, “Sulfur Bonding, ” Ronald Press, New York (1962), p. 10.

    Google Scholar 

  34. T. L. Cottrell, “The Strengths of Chemical Bonds, ” Butterworths, London (1958).

    Google Scholar 

  35. R. Leutner, Monatsh. Chem. 66, 222 (1935).

    Article  Google Scholar 

  36. Commercial sample of 97.6% optical purity; a correction factor of 1.025 has therefore been applied in calculating specific rotations of derivatives.

    Google Scholar 

  37. Values of 67–68°C and-40.6° are reported for the enantiomer; cf. V. Prelog, M. Wilhelm and D. Bruce Bright, Helv. Chim. Acta 37, 221 (1954).

    Article  Google Scholar 

  38. A. McKenzie and F. Barrow, J. Chem. Soc. 1910 (1911).

    Google Scholar 

  39. A value of —190° is reported for the pure enantiomer; cf. K. Freudenberg, J. Todd and R. Seidler, Liebigs Ann. 501, 199 (1933).

    Article  Google Scholar 

  40. G. Sumrell, B. M. Wyman, R. G. Howell and M. C. Harvey, Can. J. Chem. 42, 2896 (1964).

    Article  Google Scholar 

  41. A sample of this oil was kept for several weeks at room temperature and solidified to a crystalline mass, m.p. 71–72°.

    Google Scholar 

  42. R. H. Pickard and J. Kenyon, J. Chem. Soc. 45 (1911).

    Google Scholar 

  43. I. Tömöskösi, Tetrahedron 19, 1969 (1963).

    Article  Google Scholar 

  44. C. R. Johnson and C. W. Schroeck, J. Amer. Chem. Soc. 90, 6852 (1968).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1971 Martinus Nijhoff, The Hague, Netherlands

About this chapter

Cite this chapter

Hartgerink, J.W. (1971). Photochemically Initiated Reactions of Substituted 1,3-Dioxolanes and 1, 3-Oxathiolanes in CFCI3 . In: Spin Trapping by Nitrosoalkanes. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-9441-9_4

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-9441-9_4

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-011-8650-6

  • Online ISBN: 978-94-011-9441-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics