Brain pp 274-294 | Cite as

Pathophysiologic Basis for the Selective Vulnerability of the Immature Rat Brain to Seizures

  • Claude G. Wasterlain
  • Thomas E. Duffy


Seizures too mild to damage the adult rat brain irreversibly impair brain development when they occur during vulnerable periods (Wasterlain & Plum, 1973; Wasterlain 1976a, 1976b; Nealis et al., 1976). We are just beginning to understand the biochemical basis for this selective vulnerability of the developing brain. This understanding is of more than academic interest since we now know that development of the human brain is predominantly post-natal (Dobbing & Sands, 1973), and elucidation of pathophysiologic mechanisms offers important clues for therapy of neonatal seizures.


Status Epilepticus Brain Weight Brain Glucose PATHOPHYSIOLOGIC Basis Neonatal Seizure 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Aicardi, J., & Chevrie, Convulsive status epilepticus in infants and children: A study of 239 cases. Epilepsia 11: 187–197 (1971).Google Scholar
  2. 2.
    Aicardi, J., & Baraton, J.: A pneumoencephalographic demonstration of brain atrophy following status. Dev. Med. Child Neurol. 13: 660–667 (1971).PubMedCrossRefGoogle Scholar
  3. 3.
    Buschiazzo, P.M., Terrell, E.B., & Regen, D.M.: Sugar transport across the blood-brain barrier. Am. J. Physiol. 219: 1505–1513 (1970).PubMedGoogle Scholar
  4. 4.
    Chase, H.P., Marlow, R.A., Dabiere, C.S., et al.: Hypoglycemia and brain development. Pediatrics 52: 513–520 (1973).PubMedGoogle Scholar
  5. 5.
    Dobbing, J., & Sands, J.: Quantitative growth and development of human brain. Arch. Dis. Child. 48: 757–767 (1973).PubMedCrossRefGoogle Scholar
  6. 6.
    Duffy, T.E., Howse, D.C., & Plum, F.: Cerebral energy metabolism during experimental status epilepticus. J. Neurochem. 24: 925–934 (1975).PubMedCrossRefGoogle Scholar
  7. 7.
    Duffy, T.E., Kohle, Si., & Vannucci, R.C.: Carbohydrate and energy metabolism in perinatal rat brain: Relation to survival in anoxia. J. Neurochem. 24: 271–276 (1975).PubMedCrossRefGoogle Scholar
  8. 8.
    Enesco, M., & Leblond, C.P.: Increase in cell number as a factor of growth in the organs of the young male rat. J. Embryo]. Exp. Morphol. 10: 530–562 (1962).Google Scholar
  9. 9.
    Ferguson, R.K., & Woodbury, D.M.: Penetration of “C-insulin and 4C-sucrose into brain. cerebrospinal fluid and skeletal muscle of developing rats. Exp. Brain Res. 7: 181–194 (1969).PubMedCrossRefGoogle Scholar
  10. 10.
    Fishman, R.A.: Carrier transport of glucose between blood and cerebrospinal fluid. Am. J. Physiol. 206: 836–844 (1964).PubMedGoogle Scholar
  11. 11.
    Fowler, M.: Brain damage after febrile convulsions. Arch. Dis. Child. 32: 67–76 (1957).PubMedCrossRefGoogle Scholar
  12. 12.
    Growdon, W.A., Bratton, T.S., Houston. M.C. et al.: Brain glucose metabolism in the intact mouse. Am. J. Physiol. 221: 1738–1745 (1971).PubMedGoogle Scholar
  13. 13.
    Herman, C.J., & Lapham, L.W.: DNA content of neurons in the cat hippocampus. Science 160: 537 (1968).PubMedCrossRefGoogle Scholar
  14. 14.
    Holowach-Thurston, J., Hauhart, R.E., & Jones, E.M.: Anoxia in mice: Reduced glucose in brain with normal or elevated glucose in plasma and increased survival after glucose treatment. Pediatr. Res. 8: 238–243 (1974).PubMedCrossRefGoogle Scholar
  15. 15.
    Holowach-Thurston, J., Hauhart, R.E., & Jones, E.M., et al.: Decrease in brain glucose in anoxia in spite of elevated plasma glucose levels. Pediatr. Res. 7: 691–695 (1973).PubMedCrossRefGoogle Scholar
  16. 16.
    Holowach-Thurston, J., Pollock, P.J., Warren, S.K., et al.: Reduced brain glucose with normal plasma glucose in salicylate poisoning. J. Clin. Invest. 49: 2139–2145 (1970).CrossRefGoogle Scholar
  17. 17.
    Jacobson, M.: Developmental Neurobiology, p. 54 ( Holt, Rinehart & Winston, Inc. New York 1970 ).Google Scholar
  18. 18.
    Katzman, R., & Pappius, H.M.: Brain Electrolytes and Fluid Metabolism, pp. 33–43 ( Williams & Wilkins, Baltimore 1973 ).Google Scholar
  19. 19.
    Lajtha, A.: The development of the blood-brain barrier. J. Neurochem. 1: 216–227 (1957).PubMedCrossRefGoogle Scholar
  20. 20.
    Lombroso, C.T.: The treatment of status epilepticus. Pediatrics 53: 536–540, (1974).PubMedGoogle Scholar
  21. 21.
    Lowry, O.H., & Passonneau, J.V.: The relationships between substrates and enzymes of glycolysis in brain. J. Biol. Chem. 239: 31–42 (1964).PubMedGoogle Scholar
  22. 22.
    Meldrum, B.S., Horton, R.W., & Brierley, J.B.: Epileptic brain damage in adolescent baboons following seizures induced by Allyl-glycine. Brain 97: 407–418 (1974).PubMedCrossRefGoogle Scholar
  23. 23.
    Meldrum, B.S., & Brierley, J.B.: Prolonged epileptic seizures in primates: Ischemic cell change and its relation to ictal physiological events. Arch. Neurol. 28: 10–17 (1973).PubMedCrossRefGoogle Scholar
  24. 24.
    Moore, T.J., Lione, A.P., Regen, D.M., et al.: Brain glucose metabolism in the newborn rat. Am. J. Physiol. 221: 1746–1753 (1971).PubMedGoogle Scholar
  25. 25.
    Myers, G.G., & Netsky, M.G.: Relation of blood and cerebrospinal fluid glucose. Arch. Neurol. 6: 18–26 (1962).PubMedCrossRefGoogle Scholar
  26. 26.
    Nealis, J.G.T., Depiero, T.J., Ouellette, et al.: Neurologic sequelae of febrile convulsions: An experimental study. Neurology 26: 363 (1976).Google Scholar
  27. 27.
    Norman, R.M.: The neuropathology of status epilepticus. Med. Sci. Law 4: 46–51 (1964).PubMedGoogle Scholar
  28. 28.
    Plum, F., Howse, D.G., & Duffy, T.E.: Metabolic effects of seizures; in Plum, F. (ed), Brain Dysfunction in Metabolic Disorders: Proceedings, Vol. 53. Association for Research in Nervous and Mental Disorders, pp. 141–157 ( Raven Press, New York 1974 ).Google Scholar
  29. 29.
    Raaf, J., & Kernohan, J.W.: A study of the external granular layer of the cerebellum. Am. J. Anat. 75: 151–172 (1944).CrossRefGoogle Scholar
  30. 30.
    Schiottz-Christensen, E., & Bruhn, P.: Intelligence, behaviour and scholastic achievement subsequent to febrile convulsions: An analysis of discordant twin-pairs. Dev. Med. Child Neurol. 15: 565–575 (1973).PubMedCrossRefGoogle Scholar
  31. 31.
    Scholz, W.: Die Krampfschadigungen des Gehirns, p. 116 ( Springer, Berlin 1951 ).CrossRefGoogle Scholar
  32. 32.
    Spielmeyer, W.: Die pathogenese des epileptischen Krampfes. Z Ges. Neurol. Psychiat. 109: 501–520 (1927).CrossRefGoogle Scholar
  33. 33.
    Vernadakis, A., & Woodbury, D.M.: Cellular and extracellular spaces in developing rat brain. Arch. Neurol. 12: 284–293 (1965).PubMedCrossRefGoogle Scholar
  34. 34.
    Wasterlain, C.G., & Duffy, T.E.: Status epilepticus in immature rats. Arch. Neurol. 33: 821–827 (1976).PubMedCrossRefGoogle Scholar
  35. 35.
    Wasterlain, C.G.: Effects of neonatal status epilepticus on rat brain development. Neurology 26: 975–986 (1976a).PubMedGoogle Scholar
  36. 36.
    Wasterlain, C.G.: Effects of neonatal status seizures on ontogeny of reflexes and behavior. An experimental study in the rat. Europ. Neurol. (in press) (1976b).Google Scholar
  37. 37.
    Wasterlain, C.G.: Inhibition of cerebral protein synthesis by epileptic seizures without motor manifestations. Neurology 24: 175–180 (1974a).PubMedGoogle Scholar
  38. 38.
    Wasterlain, C.G., & Plum, F.: Vulnerability of developing rat brain to electroconvulsive seizures. Arch. Neurol. 29: 38–45 (1973).PubMedCrossRefGoogle Scholar
  39. 39.
    Wasterlain, C.G.: Breakdown of brain polysomes in status epilepticus. Brain Res. 39: 278–284 (1972).CrossRefGoogle Scholar
  40. 40.
    Winick, M., & Noble, A.: Cellular response in rats during malnutrition at various ages. J. Nutr. 89: 300–306 (1966).PubMedGoogle Scholar
  41. 41.
    Woodard, J.S.: Origin of the external granular layer of the cerebellar cortex. J. Comp. Neurol. 115: 65–73 (1960).PubMedCrossRefGoogle Scholar

Copyright information

© Martinus Nijhoff, The Hague, Netherlands 1977

Authors and Affiliations

  • Claude G. Wasterlain
  • Thomas E. Duffy

There are no affiliations available

Personalised recommendations