Skip to main content

Pathophysiologic Basis for the Selective Vulnerability of the Immature Rat Brain to Seizures

  • Chapter
Brain

Abstract

Seizures too mild to damage the adult rat brain irreversibly impair brain development when they occur during vulnerable periods (Wasterlain & Plum, 1973; Wasterlain 1976a, 1976b; Nealis et al., 1976). We are just beginning to understand the biochemical basis for this selective vulnerability of the developing brain. This understanding is of more than academic interest since we now know that development of the human brain is predominantly post-natal (Dobbing & Sands, 1973), and elucidation of pathophysiologic mechanisms offers important clues for therapy of neonatal seizures.

Supported by NIN CDS Research Grant NS 13515 and by the Research Service of the Veterans Administration.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aicardi, J., & Chevrie, Convulsive status epilepticus in infants and children: A study of 239 cases. Epilepsia 11: 187–197 (1971).

    Google Scholar 

  2. Aicardi, J., & Baraton, J.: A pneumoencephalographic demonstration of brain atrophy following status. Dev. Med. Child Neurol. 13: 660–667 (1971).

    Article  PubMed  CAS  Google Scholar 

  3. Buschiazzo, P.M., Terrell, E.B., & Regen, D.M.: Sugar transport across the blood-brain barrier. Am. J. Physiol. 219: 1505–1513 (1970).

    PubMed  CAS  Google Scholar 

  4. Chase, H.P., Marlow, R.A., Dabiere, C.S., et al.: Hypoglycemia and brain development. Pediatrics 52: 513–520 (1973).

    PubMed  CAS  Google Scholar 

  5. Dobbing, J., & Sands, J.: Quantitative growth and development of human brain. Arch. Dis. Child. 48: 757–767 (1973).

    Article  PubMed  CAS  Google Scholar 

  6. Duffy, T.E., Howse, D.C., & Plum, F.: Cerebral energy metabolism during experimental status epilepticus. J. Neurochem. 24: 925–934 (1975).

    Article  PubMed  CAS  Google Scholar 

  7. Duffy, T.E., Kohle, Si., & Vannucci, R.C.: Carbohydrate and energy metabolism in perinatal rat brain: Relation to survival in anoxia. J. Neurochem. 24: 271–276 (1975).

    Article  PubMed  CAS  Google Scholar 

  8. Enesco, M., & Leblond, C.P.: Increase in cell number as a factor of growth in the organs of the young male rat. J. Embryo]. Exp. Morphol. 10: 530–562 (1962).

    Google Scholar 

  9. Ferguson, R.K., & Woodbury, D.M.: Penetration of “C-insulin and 4C-sucrose into brain. cerebrospinal fluid and skeletal muscle of developing rats. Exp. Brain Res. 7: 181–194 (1969).

    Article  PubMed  CAS  Google Scholar 

  10. Fishman, R.A.: Carrier transport of glucose between blood and cerebrospinal fluid. Am. J. Physiol. 206: 836–844 (1964).

    PubMed  CAS  Google Scholar 

  11. Fowler, M.: Brain damage after febrile convulsions. Arch. Dis. Child. 32: 67–76 (1957).

    Article  PubMed  CAS  Google Scholar 

  12. Growdon, W.A., Bratton, T.S., Houston. M.C. et al.: Brain glucose metabolism in the intact mouse. Am. J. Physiol. 221: 1738–1745 (1971).

    PubMed  CAS  Google Scholar 

  13. Herman, C.J., & Lapham, L.W.: DNA content of neurons in the cat hippocampus. Science 160: 537 (1968).

    Article  PubMed  CAS  Google Scholar 

  14. Holowach-Thurston, J., Hauhart, R.E., & Jones, E.M.: Anoxia in mice: Reduced glucose in brain with normal or elevated glucose in plasma and increased survival after glucose treatment. Pediatr. Res. 8: 238–243 (1974).

    Article  PubMed  CAS  Google Scholar 

  15. Holowach-Thurston, J., Hauhart, R.E., & Jones, E.M., et al.: Decrease in brain glucose in anoxia in spite of elevated plasma glucose levels. Pediatr. Res. 7: 691–695 (1973).

    Article  PubMed  CAS  Google Scholar 

  16. Holowach-Thurston, J., Pollock, P.J., Warren, S.K., et al.: Reduced brain glucose with normal plasma glucose in salicylate poisoning. J. Clin. Invest. 49: 2139–2145 (1970).

    Article  Google Scholar 

  17. Jacobson, M.: Developmental Neurobiology, p. 54 ( Holt, Rinehart & Winston, Inc. New York 1970 ).

    Google Scholar 

  18. Katzman, R., & Pappius, H.M.: Brain Electrolytes and Fluid Metabolism, pp. 33–43 ( Williams & Wilkins, Baltimore 1973 ).

    Google Scholar 

  19. Lajtha, A.: The development of the blood-brain barrier. J. Neurochem. 1: 216–227 (1957).

    Article  PubMed  CAS  Google Scholar 

  20. Lombroso, C.T.: The treatment of status epilepticus. Pediatrics 53: 536–540, (1974).

    PubMed  CAS  Google Scholar 

  21. Lowry, O.H., & Passonneau, J.V.: The relationships between substrates and enzymes of glycolysis in brain. J. Biol. Chem. 239: 31–42 (1964).

    PubMed  CAS  Google Scholar 

  22. Meldrum, B.S., Horton, R.W., & Brierley, J.B.: Epileptic brain damage in adolescent baboons following seizures induced by Allyl-glycine. Brain 97: 407–418 (1974).

    Article  PubMed  CAS  Google Scholar 

  23. Meldrum, B.S., & Brierley, J.B.: Prolonged epileptic seizures in primates: Ischemic cell change and its relation to ictal physiological events. Arch. Neurol. 28: 10–17 (1973).

    Article  PubMed  CAS  Google Scholar 

  24. Moore, T.J., Lione, A.P., Regen, D.M., et al.: Brain glucose metabolism in the newborn rat. Am. J. Physiol. 221: 1746–1753 (1971).

    PubMed  CAS  Google Scholar 

  25. Myers, G.G., & Netsky, M.G.: Relation of blood and cerebrospinal fluid glucose. Arch. Neurol. 6: 18–26 (1962).

    Article  PubMed  CAS  Google Scholar 

  26. Nealis, J.G.T., Depiero, T.J., Ouellette, et al.: Neurologic sequelae of febrile convulsions: An experimental study. Neurology 26: 363 (1976).

    Google Scholar 

  27. Norman, R.M.: The neuropathology of status epilepticus. Med. Sci. Law 4: 46–51 (1964).

    PubMed  CAS  Google Scholar 

  28. Plum, F., Howse, D.G., & Duffy, T.E.: Metabolic effects of seizures; in Plum, F. (ed), Brain Dysfunction in Metabolic Disorders: Proceedings, Vol. 53. Association for Research in Nervous and Mental Disorders, pp. 141–157 ( Raven Press, New York 1974 ).

    Google Scholar 

  29. Raaf, J., & Kernohan, J.W.: A study of the external granular layer of the cerebellum. Am. J. Anat. 75: 151–172 (1944).

    Article  Google Scholar 

  30. Schiottz-Christensen, E., & Bruhn, P.: Intelligence, behaviour and scholastic achievement subsequent to febrile convulsions: An analysis of discordant twin-pairs. Dev. Med. Child Neurol. 15: 565–575 (1973).

    Article  PubMed  CAS  Google Scholar 

  31. Scholz, W.: Die Krampfschadigungen des Gehirns, p. 116 ( Springer, Berlin 1951 ).

    Book  Google Scholar 

  32. Spielmeyer, W.: Die pathogenese des epileptischen Krampfes. Z Ges. Neurol. Psychiat. 109: 501–520 (1927).

    Article  Google Scholar 

  33. Vernadakis, A., & Woodbury, D.M.: Cellular and extracellular spaces in developing rat brain. Arch. Neurol. 12: 284–293 (1965).

    Article  PubMed  CAS  Google Scholar 

  34. Wasterlain, C.G., & Duffy, T.E.: Status epilepticus in immature rats. Arch. Neurol. 33: 821–827 (1976).

    Article  PubMed  CAS  Google Scholar 

  35. Wasterlain, C.G.: Effects of neonatal status epilepticus on rat brain development. Neurology 26: 975–986 (1976a).

    PubMed  CAS  Google Scholar 

  36. Wasterlain, C.G.: Effects of neonatal status seizures on ontogeny of reflexes and behavior. An experimental study in the rat. Europ. Neurol. (in press) (1976b).

    Google Scholar 

  37. Wasterlain, C.G.: Inhibition of cerebral protein synthesis by epileptic seizures without motor manifestations. Neurology 24: 175–180 (1974a).

    PubMed  CAS  Google Scholar 

  38. Wasterlain, C.G., & Plum, F.: Vulnerability of developing rat brain to electroconvulsive seizures. Arch. Neurol. 29: 38–45 (1973).

    Article  PubMed  CAS  Google Scholar 

  39. Wasterlain, C.G.: Breakdown of brain polysomes in status epilepticus. Brain Res. 39: 278–284 (1972).

    Article  Google Scholar 

  40. Winick, M., & Noble, A.: Cellular response in rats during malnutrition at various ages. J. Nutr. 89: 300–306 (1966).

    PubMed  CAS  Google Scholar 

  41. Woodard, J.S.: Origin of the external granular layer of the cerebellar cortex. J. Comp. Neurol. 115: 65–73 (1960).

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Samuel R. Berenberg M.D.

Rights and permissions

Reprints and permissions

Copyright information

© 1977 Martinus Nijhoff, The Hague, Netherlands

About this chapter

Cite this chapter

Wasterlain, C.G., Duffy, T.E. (1977). Pathophysiologic Basis for the Selective Vulnerability of the Immature Rat Brain to Seizures. In: Berenberg, S.R. (eds) Brain. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-8884-5_19

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-8884-5_19

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-011-8221-8

  • Online ISBN: 978-94-011-8884-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics