Advertisement

Brain pp 1-21 | Cite as

Lipids of Chick Retina during Ontogenesis

  • Paul Mandel
  • Henry Dreyfus
  • Suzanne Harth
  • Louis Freysz
  • Paul-Francis Urban

Abstract

Biochemical studies of the ontogenesis of the brain encounter many difficulties due to morphologic and functional heterogeneity in the central nervous system (CNS) and due to differences in the developmental timing of the various brain regions when studying the whole brain. It is also difficult to establish which is the initial response to the factor under analysis and which are the secondary responses. The retina offers a rather simple developmental system which nevertheless is applicable to the comprehension of CNS. In the retina, the number of parameters is smaller, and it is possible to investigate specific structures with relatively little interference from neighbouring structures. The retina has a relatively simple morphology consisting roughly of alternating layers of cell bodies and synaptic regions, ordered from the scleral to the vitreal side as follows: photoreceptor region (outer and inner segment of rods and cones), outer synaptic layer (outer plexiform layer), region of horizontal, bipolar and amacrine cell bodies, zone of inner synapses (inner plexiform layer), ganglion cells. Non-neuronal cells, the so-called Müller cells, span the full thickness of the retina, and constitute the chief glial component of the retina. Microdissection of fresh or frozen tissue allows one to pool enriched fractions of a given cell type. Due to the dimensions of the whole intact retina, it has been termed an “instant” tissue slice which may be immersed in an appropriate medium, and maintained in physiological state by perfusion. The versatility of this isolated system allows one to study various parameters of metabolism, to analyse the bioelectrical response (electroretinogram: ERG) to its natural physiologic stimulus: light, under various adaptation conditions, and to investigate the influence of important biochemical compounds (putative neurotransmitters, their antagonists and agonists, as well as pharmacologic drugs) on the functional behavior of the retina. Such a perfusion system of an isolated retina allows one to correlate the effects due to compounds introduced in the perfusion medium, the electroretinogram modifications, and the biochemical changes at various levels in the layers of the tissue.

Keywords

Outer Plexiform Layer Retinal Development Embryonic Life Chick Brain Chick Retina 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bentley. J.P.. Feeney. L.. Hanson. A.W. and Mixon. R.N.: Sulfated glycolipids in ciliary body epithelium. Invest. Ophthal. 15: 575–578 (1976).PubMedGoogle Scholar
  2. Burton, K.: A study of the conditions and mechanism of the diphenylamine reaction for the colorimetric estimation of deoxyribonucleic acid. Biochem. J. 62: 315–323 (1956).PubMedGoogle Scholar
  3. Burton, R.M. and Howard, R.E.: Gangliosides and acetylcholine of the central nervous system. VIII. Role of lipids in the binding and release of neurohormones by synaptic vesicles. Ann. N.Y. Acad. Sci. 44: 411–432 (1967).CrossRefGoogle Scholar
  4. Dreyfus, H.: Recherches sur le rôle des lipides membranaires de la rétine envisagée comme modèle de structure nerveuse intégrée (“Doctorat ès-Sciences” thesis, University Louis Pasteur of Strasbourg, 1976 ).Google Scholar
  5. Dreyfus, H., Edel-Harth. S.. Urban. P.F., Neskovic. N. and Mandel, P.: Enzymatic synthesis of lactosylceramide by a galactosyltransferase from developing chicken retina. Exp. Eye Res. 25: 1–7 (1977a).PubMedCrossRefGoogle Scholar
  6. Dreyfus, H., Harth. S., Urban. P.F. and Mandel, P.; Preti, A. and Lombardo, A.: On the presence of a “particle-bound” neuraminidase in retina. A developmental study. Life Sci. 1: 1057–1064 (1976).CrossRefGoogle Scholar
  7. Dreyfus, H., Pieringer, J.A., Farooqui, A.A., Harth, S.. Rebel, G. and Sarliève, L.L.: Sulpholipid metabolism in developing chicken retina. J. Neurochem. in press 1976b.Google Scholar
  8. Dreyfus, H., Urban, P.F., Edel-Harth, S. and Mandel. P.: Developmental patterns of ganglio-sides and of phospholipids in chick retina and brain. J. Neurochem. 25: 245–250 (1975a).PubMedCrossRefGoogle Scholar
  9. Dreyfus, H., Urban, P.F., Edel-Harth, S., Neskovic. N.M. and Mandel. P.: Enzymatic synthesis of glucocerebrosides by UDP-glucose: ceramide glucosyltransferase during ontogenesis of chicken retina. Lipids 10: 542–544 (1975b).CrossRefGoogle Scholar
  10. Dreyfus, H., Urban, P.F., Edel-Harth, S., Bosch, P., Rebel. G. and Mandel, P.: Effect of light on gangliosides from calf retina and photoreceptors. J. Neurochem. 22: 1073–1078 (1974).PubMedCrossRefGoogle Scholar
  11. Edel-Harth, S., Dreyfus, H., Bosch, P., Rebel, G., Urban, P.F. and Mandel, P.: Gangliosides of whole retina and rod outer segments. FEBS Lett. 35: 284–288 (1973).PubMedCrossRefGoogle Scholar
  12. Freysz, L.: Distribution et renouvellement des phosphatides du système nerveux central: Evolution au cours de l’ontogenèse (“Doctorat ès-Sciences” thesis. University Louis Pasteur of Strasbourg. 1969 ).Google Scholar
  13. Freysz, L., Bieth, R. and Mandel, P.: Cinétique de la biosynthèse des phosphatides du cerveau de poulet durant la période embryonnaire et post-natale. Biochimie 53: 399–405 (1971).PubMedCrossRefGoogle Scholar
  14. Freysz, L., Horrocks, L.A. and Mandel, P.: Effects of deoxycholate and phospholipase A2 on choline and ethanolamine phosphotransferases in chicken brain microsomes. Biochim. Biophys. Acta in press (1977).Google Scholar
  15. Freysz, L., Lastennet, A. and Mandel, P.: Phosphocholine diglyceride transferase activity during development of the chicken brain. J. Neurochem. 19: 2599–2605 (1972).PubMedCrossRefGoogle Scholar
  16. Gatt, S.: Enzymatic hydrolysis of sphingolipids. V. Hydrolysis of monosialoganglioside and hexosylceramide by rat brain 13-galactosidase. Biochim. Biophys. Acta 137: 192–195 (1967).PubMedGoogle Scholar
  17. Green, J.P. and Robinson, J.D.: Cerebroside sulfate (sulfatide A) in some organs of the rat and in a mast cell tumor. J. Biol. Chem. 235: 1621–1624 (1960).PubMedGoogle Scholar
  18. Harth, S., Dreyfus, H., Urban, P.F. and Mandel, P.: Direct thin layer chromatography of a total lipid extract. Analyt. Biochem. submitted (1977).Google Scholar
  19. Hawthorne, J.N. and Kai, M.: Metabolism of phosphoinositides, in LAJTHA, Handbook of Neurochemistry, Vol. 3, pp. 491–508 ( Plenum Press, New York, 1970 ).Google Scholar
  20. Hayashi, K. and Katagiri, A.: Studies on the interactions between gangliosides, protein and divalent cations. Biochim. Biophys. Acta 337: 107–117 (1974).PubMedGoogle Scholar
  21. Hughes, W.F. and Lavelle, A.: On the synaptogenic sequence in the chick retina. Anat. Rec. 179: 297–302 (1974).PubMedCrossRefGoogle Scholar
  22. Klenk, E.: Beiträge zur Chemie der Lipoidosen. I. Niemann-Pick’sche Krankheit und amaurotische Idiotie. Z. Physiol. Chem. 262: 128–143 (1939).Google Scholar
  23. Lapetina, E.G., Soto, E.F. and De Robertis, E.: Gangliosides and acetylcholinesterase in isolated membranes of the rat brain cortex. Biochim. Biophys. Acta 135: 33–43 (1967).PubMedCrossRefGoogle Scholar
  24. Lunt, G.G., Canessa, O.M. and De Robertis, E.: Association of the acetylcholine-phosphatidyl inositol effect with a “receptor” proteolipid from cerebral cortex. Nature New Biol. 230: 187–189 (1971).PubMedCrossRefGoogle Scholar
  25. Mandel, P., Rem, H., Harth-Edel, S. and Mardell, R.: Distribution and metabolism of ribonucleic acid in the vertebrate central nervous system, in RICHTER, Comparative Neurochemistry, pp. 149–163 ( Pergamon Press, Oxford, 1964 ).Google Scholar
  26. McCaman, R.E. and Cook, K.: Intermediary metabolism of phospholipids in brain tissue. III. Phosphocholine glyceride transferase. J. Biol. Chem. 241: 3390–3394 (1966).PubMedGoogle Scholar
  27. Morgan, I.G., Wolfe, L.S., Mandel, P. and Gombos, G.: Isolation of plasma membranes from rat brain. Biochim. Biophys. Acta 241: 737–751 (1971).PubMedCrossRefGoogle Scholar
  28. Ochoa, E.L.M. and Bangham, A.D.: N-Acetylneuraminic acid molecules as possible serotonin binding sites. J. Neurochem. 26: 1193–1198 (1976).PubMedCrossRefGoogle Scholar
  29. Radominska-Pyrek, A. and Horrocks, L.A.: Enzymatic synthesis of I-alkyl-2-acyl-sn-glycero-3phosphorylethanolamine by the CDP-ethanolamine: 1-radyl-2-acyl-sn-glycerol ethanolaminephosphotransferase from microsomal fraction of rat brain. J. Lipid Res. 13: 580–587 (1972).PubMedGoogle Scholar
  30. Rahmann, H., Rösner, H. and Breer, H.: A functional model of sialo-glycomacromolecules in synaptic transmission and memory formation. J. Theor. Biol. 57: 231–237 (1976).PubMedCrossRefGoogle Scholar
  31. Reale, E., Luciano, L. and Spitznas, H.: Zonulae occludentes of the myelin lamellae in the nerve fibre layer of the retina and in the optic nerve of the rabbit: a demonstration by the freeze-fracture method. J. Neurocytol. 4: 131–140 (1975).PubMedCrossRefGoogle Scholar
  32. Romanoff, A.L.: The avian embryo. Structural and functional development ( The Macmillan Company, New York 1960 ).Google Scholar
  33. San Lin, R.I. and Schjeide, O.A.: Micro estimation of RNA by the cupric ion catalyzed orcinol reaction. Analyt. Biochem. 27: 473–483 (1969).PubMedCrossRefGoogle Scholar
  34. Sarliève, L.L., Neskovic, N.M., Rebel, G. and Mandel, P.: PAPS-cerebroside sulphotransferase activity in developing brain of a neurological mutant of mouse (MSD). Exp. Brain. Res. 19: 158–165 (1974).CrossRefGoogle Scholar
  35. Schengrund, C.L. and Rosenberg, A.: Gangliosides, glycosidases, and sialidase in the brain and eyes of developing chickens. Biochemistry 10: 2424–2428 (1974).Google Scholar
  36. Urban, P.F., Harth, S. and Dreyfus, H.L.: Gangliosides and phospholipids from frog and duck retina. Exp. Eye Res. 20: 397–405 (1975).PubMedCrossRefGoogle Scholar
  37. Svennerholm, L.: Chromatographic separation of human brain gangliosides. J. Neurochem. 10: 613–623 (1963).PubMedCrossRefGoogle Scholar
  38. Van den Bosch, H.: Phosphoglyceride metabolism. Ann. Rev. Biochem. 43: 243–277 (1974).PubMedCrossRefGoogle Scholar
  39. VanierM.T., Holm, M., Óhman, R. and Svennerholm, L.: Developmental profils of ganglio-sides in human and rat brain. J. Neuroc’hem. 18: 581–592 (1971).PubMedCrossRefGoogle Scholar
  40. Wells, M.A. and Dittmer, J.C.: A comprehensive study of the postnatal changes in the concentrations of the lipids of developing rat brain. Biochemistry 6: 3169–3175 (1967).PubMedCrossRefGoogle Scholar
  41. Wisniewski, H.M. and Bloom, B.R.: Experimental allergic optic neuritis (EAON) in the rabbit. J. Neurol. Sci. 24: 257–263 (1975).PubMedCrossRefGoogle Scholar
  42. Witkovski, P.: An ontogenetic study of retinal function in the chick. Vision Res. 3: 341–355 (1963).CrossRefGoogle Scholar

Copyright information

© Martinus Nijhoff, The Hague, Netherlands 1977

Authors and Affiliations

  • Paul Mandel
  • Henry Dreyfus
  • Suzanne Harth
  • Louis Freysz
  • Paul-Francis Urban

There are no affiliations available

Personalised recommendations