Hormonal Regulation of Casein Gene Expression in Normal and Neoplastic Cells in Murine Mammary Glands

  • M. R. Banerjee
  • Ranjan Ganguly
  • Nozer M. Mehta
  • Nivedita Ganguly


Contemporary advances of knowledge and technology in the areas of cellular and molecular biology have revealed that selective gene expression plays a definitive role in the regulation of cellular differentiation. In conventional terms, selective gene expression denotes a regulated transcription of different structural genes producing the respective mRNAs. During recent years it has also become evident that the physical structure of eukaryotic genes are composed of expressed (exons) and unexpressed (introns) segments along the DNA strand and this requires splicing and processing of the initial transcripts into the final mRNA (20), (50), (119). Moreover, post-translational processing of the polypeptides may also modify the final product and hence influence gene expression (108). Thus, selective gene expression during a developmental process may be subject to modulation at any of these complex series of events. Based on the observation that the insect steroid hormone, ecdysone, is capable of inducing specific puffs in polytene chromosomes of Drosophila larvae, Karlson (55) proposed that hormonal modulation of specific gene expression may influence developmental processes in the target tissue. Demonstration of ecdysone-induced synthesis of the enzyme, dopa decarboxylase in the larvae (101), correlation between transcription and puff formation in the polytene chromosomes (31), and cell-free translation of ecdysone-induced mRNA for dopa decarboxylase (56) now appear to corroborate Karlson’s original thesis.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Adams J, Kinney T, Thompson S, Rubin L, Helling B. Frequency-dependent selection for plasmid-containing cells of E. coli. Genetics 91: 627–637, 1979.PubMedPubMedCentralGoogle Scholar
  2. 2.
    Assairi L, Delouis C, Gaye P, Houdebine LM, 011iver-Bousquet M, Denamur R: Inhibition by progesterone of the lactogenic effect of prolactin in the pseudopregnant rabbit. Biochem J 144: 245–252, 1974.PubMedPubMedCentralCrossRefGoogle Scholar
  3. 3.
    Aviv H, Leder P. Purification of biologically active globin messenger RNA by chromatography on oligo thymidylic acid cellulose. Proc Natl Acad Sci USA 69: 1408–1412, 1972.PubMedPubMedCentralCrossRefGoogle Scholar
  4. 4.
    Banerjee DN, Banerjee MR. Rapidly labeled RNA synthesis in pre-lactating and lactating mammary gland. J Endocrinol 56: 145–154, 1973.PubMedCrossRefGoogle Scholar
  5. 5.
    Banerjee DN, Banerjee MR, Mehta RG. Hormonal regulation of rapidly labeled RNA synthesis in normal mammary gland, preneoplastic mammary nodules and mammary tumors of BALB/c mice with or without MTV. J Natl Cancer Inst 51: 843–849, 1973.PubMedCrossRefGoogle Scholar
  6. 6.
    Banerjee DN, Banerjee MR, Wagner JE. Regulation of DNA-polymerase activity in mouse mammary gland by ovarian steroids. J Endocrinol 51: 259–264, 1971.PubMedCrossRefGoogle Scholar
  7. 7.
    Banerjee MR. Responses of mammary cells to hormones. Int Rev Cytol 46: 1–97, 1976.CrossRefGoogle Scholar
  8. 8.
    Banerjee MR, Banerjee DN. Hormonal regulation of RNA synthesis and membrane ultra structure in mouse mammary gland. Exp Cell Res 64: 307–316, 1971.PubMedCrossRefGoogle Scholar
  9. 9.
    Banerjee MR, Ganguly N, Mehta NM, Iyer AP, Ganguly R. Functional differentiation and neoplastic transformation in an isolated whole mammary organ in vitro. pp 485–516 in Cell Biology of Breast Cancer, eds C McGrath, M Brennan, M Rich, Academic Press, New York, 1980.Google Scholar
  10. 10.
    Banerjee MR, Rogers FM, Banerjee DN. Hormonal regulation of RNA and protein synthesis in the mouse mammary gland before and during lactation. J Endocrinol 50: 281–291, 1971.PubMedCrossRefGoogle Scholar
  11. 11.
    Banerjee MR, Terry PM, Sakai S, Lin FK. Regulation of mRNA and specific milk protein in mammary gland. J Toxicol S Environ Health 3: 281–308, 1977.CrossRefGoogle Scholar
  12. 12.
    Banerjee MR, Terry PM, Sakai S, Lin FK, Ganguly R. Hormone regulation of casein messenger RNA (mRNA). In Vitro 14: 128–139, 1978.Google Scholar
  13. 13.
    Banerjee MR, Wood BG, Lin FK, Crump LR. Organ culture of the whole mammary gland of the mouse. vol 2 pp 457–462 in Tissue Culture Assoc Manual, Tissue Culture Assoc, Rockville, Maryland, 1976.Google Scholar
  14. 14.
    Banerjee MR, Wood BG, Washburn LL. Chemical carcinogen-induced alveolar nodules in organ culture of mouse mammary gland. J Natl Cancer Inst 53: 1387–1393, 1974.PubMedCrossRefGoogle Scholar
  15. 15.
    Barnawell EB. A comparative study of the responses of mammary tissues from several mammalian species to hormones in vitro. J Exp Zool 160: 189–206, 1965.CrossRefPubMedGoogle Scholar
  16. 16.
    Bern HA, Nandi S. Recent studies of the hormonal influence in mouse mammary tumorigenesis. Prog Exp Tumor Res 2: 91–145, 1961.Google Scholar
  17. 17.
    Bolander EF Jr, Nicholas KR, Topper YJ. Retention of glucocorticoid by isolated mammary tissue may complicate interpretation of results from in vitro experiments. Biochem Biophys Res Commun 91: 245–252, 1979.CrossRefGoogle Scholar
  18. 18.
    Bolivar F, Rodriguez RL, Greene PJ, Betlach MC, Heynecker HL, Boyer HW, Crosa JH, Falkow S. Construction and characterization of new cloning vehicles. II. A multipurpose cloning system. Gene 2: 95113, 1977.Google Scholar
  19. 19.
    Brawerman G. Eukaryotic messenger RNA. Annu Rev Biochem 43: 62 1642, 1974.Google Scholar
  20. 20.
    Breathnach R, Mandel JL, Chambon P. Ovalbumin gene is split in chicken DNA. Nature (Lond) 270: 314–319, 1977.CrossRefGoogle Scholar
  21. 21.
    Cardiff RD, Wellings SR, Faulkin LJ Jr. Biology of breast preneoplasia. Cancer 39: 2734–2743.PubMedCrossRefGoogle Scholar
  22. 22.
    Chambon P. The molecular biology of the eukaryotic genome is coming of age. Cold Spring Harbor Symp Quant Biol 42: 1209–1234, 1977.CrossRefGoogle Scholar
  23. 23.
    Cowie AT, Tindal JS. in The Physiology of Lactation, Arnold, London, 1971.Google Scholar
  24. 24.
    Craig RK, Brown PA, Harrison OS, Macllreavy D, Campbell PN. Guinea pig milk protein synthesis. Biochem J 160: 57–74, 1976.PubMedPubMedCentralCrossRefGoogle Scholar
  25. 25.
    Dale RMK, Livingston DC, Ward DC. The synthesis and enzymatic polymerization of nucleotides containing mercury: Potential tools for nucleic acid sequencing and structural analysis. Proc Natl Acad Sci USA 70: 2238–2242, 1973.PubMedPubMedCentralCrossRefGoogle Scholar
  26. 26.
    Darnell JE, Jelinek W, Malloy GR. Biogenesis of mRNA: Genetic regulation in mammalian cells. Science 181; 1215–1221, 1973.PubMedCrossRefGoogle Scholar
  27. 27.
    Denamur R. Hormonal control of lactogenesis. J Dairy Res 38: 237264, 1971.Google Scholar
  28. 28.
    Denamur R. Ribonucleic acids and ribonucleoprotein particles of the mammary gland. vol 1 pp 414–465 in Lactation, a Comprehensive Treatise, eds BL Larson, VR Smith, Academic Press, New York, 1974.Google Scholar
  29. 29.
    DeOme KB. The mammary tumor system in mice. A brief review. pp 127137, ed J Burdette, Univ of Utah Press, Salt Lake City, 1966.Google Scholar
  30. 30.
    Devinoy E, Houdebine LM, Delouis C. Role of prolactin and glucocorticoids in the expression of casein gene in rabbit mammary gland organ culture, quantification of mRNA. Biochim Biophys Acta 517: 360–366, 1978.PubMedPubMedCentralCrossRefGoogle Scholar
  31. 31.
    Edstrom JE, Lambert B. Gene and information diversity in eukaryotes. Prog Biophys Mol Biel 30: 57–82, 1975.CrossRefGoogle Scholar
  32. 32.
    Efstratiadis A, Kafatos FC, Maxam AM, Maniatis T. Enzymatic in vitro synthesis of globin genes. Cell 7: 279–285, 1976.PubMedCrossRefGoogle Scholar
  33. 33.
    El-Gewely MR, Helling RB. Preparative separation of DNA-ethidium bromide complexes by zonal density gradient centrifugation. Anal Biochem 102: 423–428, 1980.PubMedCrossRefGoogle Scholar
  34. 34.
    Elias JJ. Effect of insulin and cortisol on organ cultures of adult mouse mammary gland. Proc Soc Exp Biol Med 101: 500–502, 1959.PubMedCrossRefGoogle Scholar
  35. 35.
    Elias JJ. The role of prolactin in normal mammary gland growth and function. pp 37–74 in Hormonal Proteins and Peptides,’ed Ch Li, Academic Press, New York, 1980.Google Scholar
  36. 36.
    Farber E, Sporn MB. Early lesions and the development of epithelial cancer. Cancer Res 36: 2475–2706.Google Scholar
  37. 37.
    Forsyth IA. Organ culture techniques and the study of hormone effects on the mammary gland. J Dairy Res 38: 419–444, 1971.PubMedPubMedCentralGoogle Scholar
  38. 38.
    Gala RR, Westphal U. Corticosteroid binding activity in serum of mouse, rabbit and guinea pig during pregnancy and lactation: Possible involvement in the initiation of lactation. Acta Endocrinol 55: 47–61, 1965.Google Scholar
  39. 39.
    Ganguly, N., Ganguly R, Mehta NM, Crump LR, Banerjee MR. Simultaneous occurrence of pr-gnancy-like lobuloalveolar morphogenesis and casein gene expression in a culture of the whole mammary gland. In Vitro 17: 55–60, 1980.Google Scholar
  40. 40.
    Ganguly R, Banerjee MR. RNA synthesis in isolated nuclei of lactating mammary cells in presence of unmodified and mercury-labeled CTP. Nucleic Acids Res 5: 4463–4477, 1978.PubMedPubMedCentralCrossRefGoogle Scholar
  41. 41.
    Ganguly R, Ganguly N, Mehta NM, Banerjee MR. Absolute requirement of glucocorticoid for expression of the casein gene in presence of prolactin. Proc Natl Acad Sci USA 77: 6003–6006, 1980.PubMedPubMedCentralCrossRefGoogle Scholar
  42. 42.
    Ganguly R, Mehta NM, Ganguly N, Banerjee MR. Glucocorticoid modulation of casein gene transcription in mouse mammary gland. Proc Natl Acad Sci USA 76: 6466–6470, 1979.PubMedPubMedCentralCrossRefGoogle Scholar
  43. 43.
    Gaye P, Houdebine L, Denamur R. Isolation of active messenger RNA for a-s casein from bound polyribosomes of mammary gland. Biochem Biophys Res Commun 51: 637–644, 1973.PubMedCrossRefGoogle Scholar
  44. 44.
    Grunstein M, Hogness DS. Colony hybridization: A method for the isolation of cloned DNAs that contain a specific gene. Proc Natl Acad Sci USA 72: 3961–3965, 1975.PubMedPubMedCentralCrossRefGoogle Scholar
  45. 45.
    Guyette WA, Matusik RJ, Rosen JM. Prolactin mediated transcriptional and post-transcriptional control of casein gene expression. Cell 17: 1013–1023, 1979.PubMedCrossRefGoogle Scholar
  46. 46.
    Hammer DH, Leder P. SV40 recombinant carrying a functional RNA splice function and polyadenylation site from chromosomal mouse Bmaj globin gene. Cell 17: 737–747, 1979.CrossRefGoogle Scholar
  47. 47.
    Ichinose RR, Nandi S. Influence of hormones on lobuloalveolar differentiation of mouse mammary gland in vitro. J Endocrinol 35: 331–340, 1966.PubMedCrossRefGoogle Scholar
  48. 48.
    Iyer AP, Banerjee MR. Sequential expression of preneoplastic and neoplastic characteristics of mammary epithelial cell transformed in organ culture. J Natl Cancer Inst (in press), 1981.Google Scholar
  49. 49.
    Jacob ST, Sajdel EM, Macke W, Munro HM. Soluble RNA polymerases in rat liver nuclei: Properties, template specificity and amanitin responses in vitro and in vivo. Cold Spring Harbor Symp Quant Biol 35: 681–691, 1970.CrossRefGoogle Scholar
  50. 50.
    Jeffreys AJ, Flavell RA. The rabbit R-globin gene contains a large insert in the coding sequence. Cell 12: 1097–1108, 1977.PubMedCrossRefGoogle Scholar
  51. 51.
    Jenness R. The composition of milk. vol 3 pp 3–107 in Lactation, a Comprehensive Treatise, eds BL Larson, VR Smith, Academic Press, New York, 1974.Google Scholar
  52. 52.
    Jenkins JR, Bishop JO, Butterworth PHW. Molecular cloning of three major sequence species from rainbow trout protamine mRNA. Nucleic Acids Res 6: 3805–3820, 1979.PubMedPubMedCentralCrossRefGoogle Scholar
  53. 53.
    Juergens WG, Stockdale FE, Topper YJ, Elias JJ, Hormone dependent differentiation of mammary gland in vitro. Proc Natl Acad Sci USA 54: 629–634, 1965.PubMedPubMedCentralCrossRefGoogle Scholar
  54. 54.
    Kantor JA, Turner PH, Nienhuis AW. Beta thalassemia: Mutations which affect processing of the 6-globin mRNA precursor. Cell 21: 149–157, 1980.PubMedCrossRefGoogle Scholar
  55. 55.
    Karlson P. New concepts on the mode of action of hormones. Perspective Biol Med 6: 203–314, 1963.CrossRefGoogle Scholar
  56. 56.
    Kraminsky GP, Clarck WC, Estelle R, Gietz D, Sage BA, O’Connor JD, Hodgetts RB. Induction of translatable mRNA for dopa carboxylase in drosophila. An early response to ecdysterone. Proc Natl Acad Sci USA -7: 4175–4179, 1980.CrossRefGoogle Scholar
  57. 57.
    Kundu AB, Telang NT, Banerjee MR. The binding of 7,12-dimethylbenz[a]anthracene to mammary cell DNA in organ culture. J Natl Cancer Inst 61: 465–469, 1978.PubMedGoogle Scholar
  58. 58.
    Leder P, Konkel DA, Nishioka Y, Leder A, Homer DH, Kachler M. The organization and evolution of cloned globin genes. Recent Prog Horm Res 36: 241–260, 1980.PubMedGoogle Scholar
  59. 59.
    Levy S, Aviv H. Quantitation of labeled globin messenger RNA by hybridization with excess complementary DNA covalently bound to cellulose. Biochemistry 15: 1844–1847, 1976.PubMedCrossRefGoogle Scholar
  60. 60.
    Lin FK, Banerjee MR, Crump LR. Cell cycle-related hormone carcinogen interaction during chemical carcinogen induction of nodule-like mammary lesions in organ culture. Cancer Res 36: 1607–1614, 1976.PubMedGoogle Scholar
  61. 61.
    Lodish HF. Translational control of protein synthesis. Annu Rev Biochemistry 45: 39–72, 1976.CrossRefGoogle Scholar
  62. 62.
    Lyons WR, Li CH, Cole RD, Johnson RE. The hormonal control of mammary growth and lactation. Rec Prog Horm Res 14: 219–248, 1958.PubMedGoogle Scholar
  63. 63.
    Matusik RJ, Rosen JM. Prolactin induction of casein mRNA in organ culture. J Biol Chem 253: 2343–2347, 1978.PubMedGoogle Scholar
  64. 64.
    McDowell MJ, Jolik WK, Villakomoroff L, Lodish HF. Translation of reovirus messenger RNAs synthesized in vitro into reovirus polypeptides by several mammalian cell-free extracts. Proc Natl Acad Sci USA 69: 2649–2653, 1972.PubMedPubMedCentralCrossRefGoogle Scholar
  65. 65.
    McEnzie HA. Whole casein, isolation, properties and zone electrophoresis. vol 2 pp 87–116 in Milk Protein Chemistry and Molecular Biology, ed HA McEnzie, Academic Press, New York, 1971.Google Scholar
  66. 66.
    McKnight GS. The induction of ovalbumin and conalbumin mRNA by estrogen and progesterone in chick oviduct explant cultures. Cell 14: 403–413, 1978.PubMedCrossRefGoogle Scholar
  67. 67.
    McKnight GS, Palmiter RD. Transcriptional regulation of the ovalbumin and conalbumin genes by steroid hormones in the chick oviduct. J Biol Chem 254: 9050–9058, 1979.PubMedGoogle Scholar
  68. 69.
    Medina D. Preneoplasia in Breast Cancer. vol 2 pp 47–102, ed WL McGuire, Plenum Publishing, New York, 1978.Google Scholar
  69. 69.
    Mehta NM, Ganguly N, Ganguly R, Banerjee MR. Hormonal modulation of the casein gene expression in a mammogenesis-lactogenesis two-step culture model of whole mammary gland of the mouse. J Biol Chem 255: 4430–4434, 1980.PubMedGoogle Scholar
  70. 70.
    Mehta RG, Banerjee MR. Action of growth promoting hormones on macromolecular biosynthesis during lobuloalveolar development of the entire mammary gland in organ culture. Acta Endocrinol 80: 501–516, 1975.PubMedCrossRefGoogle Scholar
  71. 71.
    Mena F, Enjalbert L, Carbonell M, Priam M, Kordan C. Effect of suckling on plasma prolactin and hypothalamic monoamine levels in the rat. Endocrinology 99: 445–451, 1976.PubMedCrossRefGoogle Scholar
  72. 72.
    Nandi S. Hormonal control of mammogenesis and lactogenesis in C3H/HeCrgl mouse. Univ Calif Publ Zoo 65: 1–129, 1959.Google Scholar
  73. 73.
    Nandi S, McGrath CS. Mammary neoplasia in mice. Adv Cancer Res 17: 353–414, 1973.CrossRefGoogle Scholar
  74. 74.
    Nardacci NJ, McGuire WL. Casein and a-lactalbumin mRNA in experimental breast cancer. Cancer Res 37: 1186–1190, 1977.PubMedGoogle Scholar
  75. 75.
    Nguyen-Huu MC, Sippel AA, Hynes NE, Groner B, Schutz G. Preferential transcription of the ovalbumin gene in isolated hen oviduct nuclei by RNA polymerase B. Proc Natl Acad Sci USA 75; 686–690, 1978.PubMedPubMedCentralCrossRefGoogle Scholar
  76. 76.
    O’Malley BW, Roop DR, Lai EC, Nordstrom J, Callerall JF, Swaneck DA, Colbert M, Tsai J, Dugaiczyk A, Woo SLC. The ovalbumin gene; Organization structure, transcription and regulation. Rec Prog Hormone Res 35: 1–46, 1979.Google Scholar
  77. 77.
    O’Malley BW, Tsai MJ, Tsai SY, Towele HC. Regulation of gene expression in chick oviduct. Cold Spring Harbor Symp Quant Biol 52: 605–615, 1977.Google Scholar
  78. 78.
    Orkin SH, Swerdlow PS. Globin RNA synthesis in vitro by isolated erythroleukemic cell nuclei: Direct evidence for increased transcription during erythroid differentiation. Proc Natl Acad Sci USA 74: 2475–2479, 1977.PubMedPubMedCentralCrossRefGoogle Scholar
  79. 79.
    Palmiter RD. Magnesium precipitation of ribonucleoprotein complexes. Expedient techniques for the isolation of undegraded polysomes and messenger ribonucleic acid. Biochemistry 13: 3606–3615, 1974.PubMedCrossRefGoogle Scholar
  80. 80.
    Palmiter RD, Moore PB, Mulvihill ER, Emtage S. Significant lag in the induction of ovalbumin messenger RNA by steroid hormones. A receptor translation hypothesis. Cell 8: 557–572, 1976.PubMedCrossRefGoogle Scholar
  81. 81.
    Paterson BM, Roberts BE, Kuff EL. Structural gene identification and mapping by DNA mRNA hybrid-arrested cell-free translation. Proc Natl Acad Sci USA 74: 4370–4374, 1977.PubMedPubMedCentralCrossRefGoogle Scholar
  82. 82.
    Pauley RJ, Socher SH. Hormonal influences on the expression of casein messenger RNA during mouse mammary tumorigenesis. Cancer Res 40: 362–367, 1980.PubMedGoogle Scholar
  83. 83.
    Perry RP_ Processing of RNA. Annu Rev Biochem 45: 605–629, 1976.PubMedCrossRefGoogle Scholar
  84. 84.
    Pich A, Bussolati G, DiCarlo F. Production of casein and presence of estrogen receptor in human breast cancer. J Natl Cancer Inst 58: 1483–1484, 1977.PubMedCrossRefGoogle Scholar
  85. 85.
    Qasba PK, Guillino PM. a-lactalhumin content of rat mammary carcinomas and effect of pituitary stimulation. Cancer Res 37: 3792–3795, 1977.PubMedGoogle Scholar
  86. 86.
    Ray DB, Horst IA, Jansen RW, Kowal J. Normal mammary cells in longterm culture: I. Development of hormone dependent functional monolayer cultures and assay of alpha-lactalbumin production. Endocrinology 108: 573–583, 1981.PubMedGoogle Scholar
  87. 87.
    Ray DB, Horst IA, Jansen RW, Mills NC, Kowal J. Normal mammary cells in long-term culture. II. Prolactin, corticosterone, insulin and triodothyronine effects on alpha-lactalbumin production. Endocrinology 108: 584–590, 1981.PubMedCrossRefGoogle Scholar
  88. 88.
    Ringold GM, Yamamoto KR, Bishop JM, Varmus HE. Glucocorticoid stimulated accumulation of mouse mammary tumor virus RNA: Increased rate of synthesis of viral RNA. Proc Natl Acad Sci USA 74: 2879–2883, 1977.PubMedPubMedCentralCrossRefGoogle Scholar
  89. 89.
    Rivera E. Mammary gland culture. pp 442–471 in Methods in Mammalian Embryology, ed JC Danial, Freeman, San Francisco, 1971.Google Scholar
  90. 90.
    Rivera EM. Hormonal control of cellular events during lactogenesis, some unresolved problems. pp 279–295 in Lactogenic Hormones Fetal Nutrition and Lactation, ed JB Josimovich Jr, Wiley and Sons, New York, 1974.Google Scholar
  91. 91.
    Rivera EM, Bern HA. Infleunce of insulin on maintenance and secretory stimulation of mouse mammary tissue in organ culture. Endocrinology 69: 340–353, 1961.PubMedCrossRefGoogle Scholar
  92. 92.
    Roberts BE, Paterson BM. Efficient translation of tobacco mosaic virus RNA and rabbit globin as RNA in a cell-free system from commercial wheat germ. Proc Natl Acad Sci USA 70: 2330–2334, 1973.PubMedPubMedCentralCrossRefGoogle Scholar
  93. 93.
    Rosen JM, Matusik R, Richard DA, Gupta P, Rodgers JR. Multihormonal regulation of casein gene expression at the transcriptional and post-transcriptional levels in the mammary glands. Recent Prog Hor Res 36: 157–193, 1980.Google Scholar
  94. 94.
    Rosen JM, O’Neal DL, McHugh JE, Comstock JP. Progesterone mediated inhibition of casein mRNA and polysomal casein synthesis in the rat mammary gland during pregnancy. Biochemistry 17: 290–297, 1978.PubMedCrossRefGoogle Scholar
  95. 95.
    Rosen JM, Socher SH. Detection of casein messenger RNA in hormone dependent mammary cancer by molecular hybridization. Nature (Lend) 269: 83–86, 1977.CrossRefGoogle Scholar
  96. 96.
    Rosen JM, Woo SLC, Comstock JP. Regulation of casein messenger RNA during development of rat mammary gland. Biochemistry 14: 2895 2903, 1975.Google Scholar
  97. 97.
    Sakai S, Banerjee MR. Glucocorticoid modulation of prolactin receptors on mammary cells of lactating mice. Biochim Biophys Acta 582: 79–88, 1979.PubMedCrossRefGoogle Scholar
  98. 98.
    Sakai S, Enami J, Nandi S, Banerjee MR. Prolactin receptor on dissociated mammary epithelial cells at different stages of development. Mol Cell Endocrinol 12: 285–298, 1978.PubMedCrossRefGoogle Scholar
  99. 99.
    Schimke RT, McKnight GS, Shapiro DJ, Sullivan D, Palacois R. Hormone regulation of ovalbumin synthesis in chick oviduct. Recent Prog Horm Res 31: 175–211, 1975.PubMedGoogle Scholar
  100. 100.
    Science (issue no. 4286) vol. 196, 1977.Google Scholar
  101. 101.
    Shaaya E, Serkeris CE. Ecdysone during insect development. Comp Gen Endocrinol 5: 35–39, 1965.CrossRefGoogle Scholar
  102. 102.
    Shine J, Seeburg PH, Martial JA, Baxter JD, Goodman HM. Construction and analysis of recombinant DNA for human chorionic somatomammotropin. Nature (Lond) 270: 494–199, 1977.CrossRefGoogle Scholar
  103. 103.
    Shymala G. Specific cytoplasmic glucocorticoid hormone receptors in lactating mammary glands. Biochemistry 12: 3085–3090, 1973.CrossRefGoogle Scholar
  104. 104.
    Singh D, Bern HA, DeOme KB. Strain differences in response of the mouse mammary gland to hormones in vitro. J Natl Cancer Inst 45: 657–675, 1970.PubMedGoogle Scholar
  105. 105.
    Sippel UE, Land H, Lindenmaier W, Nguyen-Huu MC, Wortz T, Timis KN, Giesecke K, Schutz G. Cloning of chicken lysozyme structural gene sequences synthesized in vitro. Nucleic Acids Res 5: 32753294, 1978.PubMedPubMedCentralCrossRefGoogle Scholar
  106. 106.
    Smith MM, Huang RC. Transcription in vitro of immunoglobulin kappa light chain genes in isolated mouse myeloma nuclei and chromatin. Proc Natl Acad Sci USA 73: 775–779, 1976.PubMedPubMedCentralCrossRefGoogle Scholar
  107. 107.
    Southern EM. Detection of specific sequences among DNA fragments separated by gel electrophoresis. J Mol Biol 98: 503–517, 1975.PubMedCrossRefGoogle Scholar
  108. 108.
    Spelsberg TC, Thrall C, Webster G, Pickier G. Isolation and characterization of the nuclear acceptor that binds the progesterone-receptor complex in hen oviduct. pp 309–337 in Hormone Res. eds N Norvell, T Shellenberger, Hemisphere Publishing, Washington, DC, 1977.Google Scholar
  109. 109.
    Strobl J, Lippman M. Prolonged retention of estradiol by human breast cancer cells in tissue culture. Cancer Res 39: 3319–3329, 1979PubMedGoogle Scholar
  110. 110.
    Tata JR. Hormones and the synthesis and utilization of ribonucleic acid. vol 5 pp 191–250 in Progress in Nucleic Acid Research and Molecular Biology, eds JN Davidson, WE Cohn, Academic Press, New York, 1966.Google Scholar
  111. 111.
    Tata JR. Regulation of protein synthesis by growth and developmental hormones. vol 1 pp 89–133 in Biochemical Actions of Hormones, ed G Litwack, Academic Press, New York, 1970.Google Scholar
  112. 112.
    Tata JR. Expression of the vitellogenin gene. Cell 9: 1–14, 1976.PubMedCrossRefGoogle Scholar
  113. 113.
    Tata JR, Smith DF. Vitellogenesis: A versatiel model for hormonal regulation of gene expression. Recent Prog Horm Res 35: 47–95, 1979.PubMedGoogle Scholar
  114. 114.
    Telang NT, Banerjee MR, Iyer AP, Kundu AB. Neoplastic transformation of epithelial cells in whole mammary gland in vitro. Proc Nati Acad Sci USA 76: 5886–5890, 1979.CrossRefGoogle Scholar
  115. 115.
    Terry PM, Ball EM, Ganguly R, Banerjee MR. An indirect radioimmunoassay for mouse casein using 125I-labeled antigen. J Immunol Methods 9: 123–134, 1975.PubMedCrossRefGoogle Scholar
  116. 116.
    Terry PM, Banerjee MR, Lui RM. Hormone-inducible casein messenger RNA in a serum-free organ culture of whole mammary gland. Proc Natl Acad Sci USA 74: 2441–2445, 1977.PubMedPubMedCentralCrossRefGoogle Scholar
  117. 117.
    Terry PM, Ganguly R, Ball EM, Banerjee MR. Murine mammary gland RNA directed synthesis of casein in a heterologous cell-free protein synthesis system. Cell Differ 4: 113–122, 1975.PubMedCrossRefGoogle Scholar
  118. 118.
    Terry PM, Lin FK, Banerjee MR. Responses of mouse mammary gland casein mRNA to corticosteroid action and suckling. Mol Cell Endocrinol 9: 169–182, 1977.PubMedCrossRefGoogle Scholar
  119. 119.
    Tilghman SM, Tiemeier DC, Seidman JG, Peterkin BM, Sullivan M, Meizel GV, Leder P. Intervening sequence of DNA identified in the structural portion of mouse 8-globin gene. Proc Natl Acad Sci USA 75: 725–729, 1978.PubMedPubMedCentralCrossRefGoogle Scholar
  120. 120.
    Tonelli QJ, Custer RP, Sorof S. Transformation of cultured mouse mammary glands by aromatic amines and amides and their derivatives. Cancer Res 39: 1784–1792, 1979.PubMedGoogle Scholar
  121. 121.
    Topper YJ. Multiple hormone interaction related to growth and differentiation of mammary gland in vitro. Trans NY Acad Sci 30: 869–874, 1968.CrossRefGoogle Scholar
  122. 122.
    Topper YJ. Multiple hormone interaction in development of mammary gland in vitro. Recent Prog Horm Res 26: 287–308, 1970.PubMedPubMedCentralGoogle Scholar
  123. 123.
    Topper YJ, Freeman CS. Multiple hormone interactions in the developmental biology of the mammary gland. Physiol Rev 60: 1049–1106, 1980.CrossRefPubMedGoogle Scholar
  124. 124.
    Topper YJ, Oka T. Some aspects of mammary gland development in the mature mouse. vol 1 pp 327–348 in Lactation, a Comprehensive Treatise, eds GL Larson, VR Smith, Academic Press, New York, 1974.Google Scholar
  125. 125.
    Tsai MJ, Tsai SY, Chang CW, O’Malley BW. Effect of estrogen on gene expression in the chick oviduct: In vitro transcription of the ovalbumin gene. Biochim Biophys Acta 521: 689–707, 1978.PubMedCrossRefGoogle Scholar
  126. 126.
    Tucker HA, Endocrinology of lactation. vol 3 pp 199–223 in Seminars in Perinatology, eds TK Oliver, TH Kirschbaum, Grune and Stratton, New York, 1979.Google Scholar
  127. 127.
    Tucker HA. General endocrinological control of lactation. vol 1 pp 277–326 in Lactation, a Comprehensive Treatise, eds BL Larson, VR Smith, Academic Press, New York, 1974.Google Scholar
  128. 128.
    Turkington RW. Multiple hormonal interaction. vol 2 pp 55–80 in Biochemical Actions of Hormones, ed G Litwack, Academic Press, New York, 1972.Google Scholar
  129. 129.
    Turkington RW, Mazumdar GC, Kadohama N, Maclndoe JH, Frantz WL. Hormonal regulation of gene expression in mammary cells. Recent Prog Horm Res 29: 417–455, 1973.PubMedGoogle Scholar
  130. 130.
    Venetianer P, Leder P. Enzymatic synthesis of solid phase bound DNA sequences corresponding to specific mammalian genes. Proc Natl Acad Sci USA 71: 3892–3895, 1974.PubMedPubMedCentralCrossRefGoogle Scholar
  131. 131.
    Weissbach H, Ochoa S. Soluble factors required for eukaryotic protein synthesis. Annu Rev Biochem 45: 191–216, 1976.PubMedCrossRefGoogle Scholar
  132. 132.
    Willis RA. in Pathology of Tumors, Butterworth, London, 1967.Google Scholar
  133. 133.
    Wittliff JL. Steroid binding proteins in normal and neoplastic mammary cells. Methods Cancer Res 11: 293–354, 1975.Google Scholar
  134. 134.
    Wood BG, Washburn LL, Mukherjee AS, Banerjee MR. Hormonal regulation of lobuloalveolar growth, functional differentiation and regression of whole mammary gland in organ culture. J Endocrinol 65: 1–6, 1975.PubMedCrossRefGoogle Scholar
  135. 135.
    Yamamoto R, Albert B. Steroid receptors: Elements for modulation of eukaryotic transcription. Annu Rev Biochem 38: 722–746, 1976.Google Scholar

Copyright information

© Eden Press Inc. 1982

Authors and Affiliations

  • M. R. Banerjee
  • Ranjan Ganguly
  • Nozer M. Mehta
  • Nivedita Ganguly

There are no affiliations available

Personalised recommendations