Skip to main content

Ceramic Matrix Composites: Properties and Applications

  • Chapter

Abstract

Advanced ceramics exhibit a combination of properties: high strength at elevated temperature, high hardness, good corrosion and erosion behaviour, high elastic modulus, low density and generally low coefficients of friction, that make them potential candidates for many structural applications. Today major applications of advanced ceramics include cutting tools, wear components, bioceramics, heat exchangers, coatings, etc. However, to allow their use in new areas such as engines, turbines, etc., it is necessary to improve their reliability and to reduce their brittleness.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Rouby, D. and Navarre, G., Interfaces et Micromechanisms dans les Composites Fibreux à Matrice Ceramique, Silicates Industriels 55 (7/8) (1990) 201–16.

    CAS  Google Scholar 

  2. Sheppard, L. M., A global perspective of advanced ceramics, Am. Ceram. Soc. Bull., 68 (9) (1989) 1624–33.

    Google Scholar 

  3. Strong growth predicted for several ceramic markets, Am. Ceram. Soc. Bull., 67 (12) (1989) 1888–9.

    Google Scholar 

  4. Mah, T., Mendirata, M. G., Katz, A. P. and Mazdiyasni, K. S., Recent developments in fibre-reinforced high temperature ceramic composites, Am. Ceram. Soc. Bull., 66 (2) (1987) 304–8.

    CAS  Google Scholar 

  5. Rouby, D., Les matériaux composites à fibres et matrice céramique. Proceedings of the lime Conference Franco Allemande sur les céramiques techniques, Aachen, 4–6 March 1987. Institut für Gesteinshüttenkunde der RWTH-Aachen, 1987, pp. 265–86.

    Google Scholar 

  6. Sheppard, L. M., Challenges facing the carbon industry, Am. Ceram. Soc. Bull., 67 (12) (1988) 1897–902.

    Google Scholar 

  7. Sambell, R. A. J. et al., Carbon fibre composites with ceramic and glass matrices, Part 2: Continuous fibres, J. Mater. Sci., 7 (6) (1972) 676–81.

    Article  CAS  Google Scholar 

  8. Phillips, D. C., Sambell, R. A. J. and Brown, D. H., The mechanical properties of carbon fiber reinforced pyrex, J Mater. Sci., 7 (1972) 1454–64.

    Article  CAS  Google Scholar 

  9. Yajima, S., Okamura, K, Hayashi, J. and Omori, M., Synthesis of continuous SiC fibers with high tensile strength, J. Am. Ceram. Soc., 59 (7–8) (1976) 324–7.

    Article  CAS  Google Scholar 

  10. Fantozzi, G., Comportement mécanique des céramiques composites à fibres et à dispersoides, Silicates Industriels, 53 (5–6) (1988) 67–84.

    CAS  Google Scholar 

  11. Moore, R. E., Long, M. C. and Ha, J., Development of glass ceramic matrix composites for aircraft application. Presented at the 2nd Int. Conf. on Ceramic-Ceramic Composites, Mons, Belgium, 17–19 October 1989. To be published in Silicates Industriels, 56 (1991).

    Google Scholar 

  12. Cornie, J., Chiang, Y. M., Uhlmann, D. R. and Mortensen, A., Processing of metal and ceramic matrix composites, Am. Ceram. Soc. Bull., 65 (2) (1986) 293–304.

    CAS  Google Scholar 

  13. Schioler, L. J. and Stighlich, J. J., Ceramic matrix composites–ä literature review, Am. Ceram. Soc. Bull., 65 (2) (1986) 289–92.

    CAS  Google Scholar 

  14. Cales, B., Ceramic matrix composites. In: Proceedings of the 2nd European Symposium on Engineering Ceramics, Riley, F. L. (ed.), Elsevier Applied Science, London, 1989, pp. 171–202.

    Chapter  Google Scholar 

  15. Jayatilaka, A., Fracture of engineering brittle material. Elsevier Applied Science, London, 1989, p. 21.

    Google Scholar 

  16. Evans, A. G., Toughening mechanisms in zirconia alloys, Adv. Ceram., 12 (1984) 193.

    CAS  Google Scholar 

  17. Lange, F. E., Transformation toughening–Parts Ito IV, J Mater. Sci., 17 (1982) 225–54.

    Article  CAS  Google Scholar 

  18. Leriche, A., Influence des paramètres d’élaboration de composites mullitezircone sur leur microstructure. PhD thesis, Université de l’Etat, Mons, Belgium, 1986.

    Google Scholar 

  19. Leriche, A., Descamps, P. and Cambier, F., High temperature mechanical behaviour of mullite zirconia composites obtained by reaction sintering. Zirconia ‘88, Advances in Zirconia Science and Technology, eds. B. Meriani and C. Palmonari. Elsevier Applied Science, London 1989, pp. 137–51.

    Google Scholar 

  20. Grahl-Madsen, L., Daugaard, C., Engell, J., Leriche, A., Descamps, P. and Cambier, F., Zirconia toughened mullite ceramics prepared from alkoxides. Silicates Industriels 55 (9/10) 247–57.

    Google Scholar 

  21. Leriche, A., Moortgat, G., Cambier, F., Homerin, P., Thevenot, F., Orange, G. and Fantozzi, G., Preparation and microstructure of zirconia-toughened alumina ceramics, Adv. Ceram., 24 (1988) 1033–41.

    Google Scholar 

  22. Orange, G., Fantozzi, G., Cambier, F., Leblud, C., Anseau, M. R. and Leriche, A., High temperature mechanical properties of reaction-sintered mullite-zirconia and mullite/alumina/zirconia composites, J. Mater. Sci., 20 (1985) 2533–40.

    Article  CAS  Google Scholar 

  23. Edrees, H. J. and Hendry, A., Metal reinforced ceramic matrix composites. Silicates Industriels 55 (7/8) (1990) 217–22.

    CAS  Google Scholar 

  24. Wahi, R. P. and Ilschner, B., Fracture behaviour of composites based on Al2O3-TiC, J. Mater. Sci., 15 (1980) 875–85.

    Article  CAS  Google Scholar 

  25. Wahi, R. P., Fracture behaviour of two-phase ceramic alloys based on aluminium oxide, Trans. Indian Inst. Metals, 34 (2) (1981), 89–102.

    CAS  Google Scholar 

  26. Grellner, W., Hubner, H., Ilschner, B. and Kleinlein, F. W., On high temperature strength of a two-phase Al2O3 base material, Sci. Ceram., 10 (1980) 513–19.

    CAS  Google Scholar 

  27. Lee, S. H., Ceramic compositions. Int. Patent No. WO 81 /0 1143, 1981.

    Google Scholar 

  28. Lee, S. H., Wear resistant ceramic materials. Int. Patent No. WO/01144, 1981.

    Google Scholar 

  29. Borom, M. P. and Lee, M., Effect of heating rate on densification of alumina-titanium carbide composites, Adv. Ceram. Mater., 1 (4) (1986) 335–40.

    CAS  Google Scholar 

  30. North, B., Ceramic cutting tools–a review, Int. J. High Tech. Ceram., 3 (1987) 113–27.

    Article  CAS  Google Scholar 

  31. Yoshimura, H., Ito, N., Nishigaki, K. and Anzai, K., Metallkeramik für Schneidwerkzeuge und daraus hergestellte Schneidplattchen. Patent (D) No. DE 3346873A1, 1984.

    Google Scholar 

  32. Tanaka, H., Yamamoto, Y. and Sakurai, K., Keramischer Formkörper.für die spanende Bearbeitung und verfahren zu seiner Heistellung. Patent (D) No. DE 2919370C2, 1983.

    Google Scholar 

  33. Tanaka, H. and Yamamoto, Y., Gesinterde Keramik insbesondere für Zuspannungswerkzeuge und Verfahren zur Herstellung derselben. Patent (D) No. DE 3010545A1, 1980.

    Google Scholar 

  34. Tanaka, H. and Yamamoto, Y., Gesinterter Keramikkörper für Schneidwerk-zeuge und Verfahren zu dessen Herstellung. Patent (D) No. DE 3027401A1, 1981.

    Google Scholar 

  35. Katsumura, Y. and Fukuhara, M., Plastic deformation in Al2O3-Ti(C x , N 1 − x ) ceramics, High tech. ceramics, Vincenzini, P. (ed.), Elsevier Science Publishers, London, 1987.

    Google Scholar 

  36. Aspinwall, D. K., Tunstall, M. and Hummerton, R., Cutting tool life comparisons. Proceedings of the 25th Int. Machine Tool Design and Research Conference, Tobias, S. A. (ed.), University of Birmingham, 1985, pp. 269–77.

    Google Scholar 

  37. Laugier, M T., Surface toughness of ceramics, J Mater. Sci., 5 (1986) 252.

    CAS  Google Scholar 

  38. Furakawa, M., Nakamo, O. and Takashima, Y., Fracture toughness in the system Al2O3-TiC ceramics, Nippon Tungsten Rev., 18 (1985) 16–22.

    Google Scholar 

  39. Kamiyo, E., Honda, M., Takeuchi, H., Higuchi, M. and Tanimura, T., Electrical discharge machinable Si3N4 ceramics, Sumitomo Electric Technical Review, 24 (1985) 183–90.

    Google Scholar 

  40. Lange, F. F., Effect of microstructure on strength of Si3N4-SiC composite system, J Am. Ceram. Soc., 56 (9) (1973) 445–50.

    Article  CAS  Google Scholar 

  41. Faber, K. T. and Evans, A. G., Crack reflection process. I. Thory, Acta Metall., 31 (4) (1983) 565–76.

    Article  Google Scholar 

  42. Faber, K. T. and Evans, A. G., Acta Metall., 32 (4) (1983) 577–84.

    Google Scholar 

  43. Homeny, J., Waughn, W. L. and Ferber, M. K., Processing and mechanical properties of SiC-Whisker-Al2O3-matrix composites, Am. Ceram. Soc. Bull., 66 (2) (1987) 333–8.

    CAS  Google Scholar 

  44. Wei, C. C. and Becher, P. F., Development of SiC-whisker reinforced ceramics, Am. Ceram. Soc. Bull., 64 (2) (1985) 298–304.

    CAS  Google Scholar 

  45. Chokshi, A. H. and Porter, J. R., Creep deformation of an alumina matrix composite reinforced with silicon carbide whiskers, J. Am. Ceram. Soc., 68 (6) (1985) C144–5.

    Article  CAS  Google Scholar 

  46. Buljan, S. T., Baldoni, J. G. and Huckabee, M. L., Si3N4-SiC composites, Am. Ceram. Soc. Bull., 66 (2) (1987) 347–52.

    CAS  Google Scholar 

  47. Black, J. A., Shaping reinforcement for composites, advanced materials and processes, Metal Progress, 3 (1988) 51–4.

    Google Scholar 

  48. Birchall, J. D., Stanley, D. R., Mockford, M. J., Pigott, F. and Pinto, P. J., Toxicity of silicon carbide whiskers, J Mater. Sci. Lett., 7 (1988) 350–2.

    Article  CAS  Google Scholar 

  49. Mecholsky, J. J. Jr, Engineering research needs of advanced ceramics and ceramic-matrix, Am. Ceram. Soc. Bull., 68 (2) (1989) 367–75.

    CAS  Google Scholar 

  50. Kandori, T., Ukyo, Y. and Wada, S., Directly HIP SiC whisker reinforced Si3N4 in whisker and fiber toughened ceramics. In Proceedings of an International Conference, Oak Ridge, Tennessee, USA, 7–9 June, eds. R. A. Bradley, D. E. Clark, D. C. Larsen and J. O. Stiegler. ASM International, USA, 1988, pp. 125–9.

    Google Scholar 

  51. Hoffman, M. J., Nagel, A., Greil, P. and Petzow, G., Slip casting of SiCwhisker reinforced Si3N4, J Am. Ceram. Soc., 72 (5) (1989) 765–9.

    Article  Google Scholar 

  52. Janney, M. A., Mechanical properties and oxidation behaviour of a hot pressed SiC-15 vol% TiB, composite, J. Mater. Sci., 25 (1990) 157–60.

    Article  Google Scholar 

  53. Tani, T. and Wada, S., SiC matrix composites reinforced with internally-synthesized TiB2. 13th Annual Conference on Composites and Advanced Ceramic Materials, Cocoa Beach, FL, USA, January 1989; to be published in the Proceedings.

    Google Scholar 

  54. McMurty, C. H., Boecker, W. D. G., Seshadri, S. G., Zanghi, J. and Gamier, J. E., Microstructure and material properties of SiC-TiB, particulate composites, Am. Ceram. Soc. Bull., 66 (2) (1987) 325–9.

    Google Scholar 

  55. Ford, R. G., A development engineer’s view of barrier to success in marketing structural ceramics for engine applications, J Aust. Ceram. Soc., 23 (1) (1987) 47–8.

    CAS  Google Scholar 

  56. Billman, E. R., Mehrotra, P. K., Shuster, A. F. and Beeghly, C. W., Machining with Al2O3-SiC whisker cutting tool, Ceram. Engng Sci. Proc., 9 (7–8) (1988) 543–52.

    Article  CAS  Google Scholar 

  57. Claussen, N. and Petzow, G., Whisker reinforced oxide ceramics, J. Phys. Cl (1986) 693–702.

    Google Scholar 

  58. Buljan, S. T., Pasto, A. and Kim, H. J., Ceramic whisker and particulate composites: properties, reliability and applications, Am. Ceram. Soc. Bull., 68 (2) (1989) 387–94.

    CAS  Google Scholar 

  59. Suzuki, J. and Sakakibara, S., Material for cutting tools, use of saw and cutting tools. European Patent No. EP 0247630A2, 1987.

    Google Scholar 

  60. Das, S. and Randall, T., Ceramic heat exchangers: cost estimates using a process-cost approach, Am. Ceram. Soc. Bull., 67 (10) (1988) 1684–9.

    CAS  Google Scholar 

  61. Ramme, R. and Hausner, H., Mechanical properties of ZrO2 (2% Y2O3) derived from freeze dried coprecipitated hydroxides, Ber. D.KG., 64 (1–2) (1987) 12–14.

    CAS  Google Scholar 

  62. Sutton, W. H., Microwave processing of ceramic materials, Am. Ceram. Soc. Bull., 68 (2) (1989) 376–86.

    CAS  Google Scholar 

  63. McCauley, J. W., Some considerations for the evolution of advanced ceramics, James I. Mueller Memorial Lecture, Ceram. Engng Sci. Proc., 9 (7–8) (1988) 553–60.

    Google Scholar 

  64. Adair, J. H., Anderson, D. A., Dayton, G. O. and Shrout, T. R., A review of the processing of electric ceramics with an emphasis on multilayer capacitor fabrication, J. Mater. Edu, 9 (1–2) (1987) 71–118.

    Google Scholar 

  65. Nagono, T., Kato, H. and Wakai, F., Solid state bonding of superplastic material. Proceedings of the MRS Int. Meeting on Adv. Mat., Vol. 7, Superplasticity, M. Doyamo, S. Somiya and R. P. H. Chang (eds), Materials Research Society, 1989, pp. 285–92.

    Google Scholar 

  66. Wakai, F., Superplasticity of Zirconia toughened ceramics, PhD thesis, Kyoto University, Japan, 1988.

    Google Scholar 

  67. Ko, F. K., Preform fiber architecture for ceramic-matrix composites, Am. Ceram. Soc. Bull., 68 (2) (1989) 401–14.

    CAS  Google Scholar 

  68. Rand, B., Fabrication of carbon-carbon composites by liquid infiltration. Presented at the 2nd Conference on Ceramic-Ceramic Composites, Mons, Belgium, 17–19 October 1989. To be published in Silicates Industriels, 56 1991.

    Google Scholar 

  69. Pierre, A. C., Uhlmann, D. R. and Hordonneau, A., Ceramic composites made by sol-gel processing. Rev. Int. Hautes Temperatures Refract., 23 1986 29–35.

    CAS  Google Scholar 

  70. Cornie, J. A., Chiang, Y. M., Uhlman, D. R., Mortensen, A. and Collins, J. M., Processing of metal and ceramic matrix, Am. Ceram. Soc. Bull., 65 (2) (1986) 293–303.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1991 Elsevier Applied Science Publishers Ltd

About this chapter

Cite this chapter

Descamps, P., Tirlocq, J., Cambier, F. (1991). Ceramic Matrix Composites: Properties and Applications. In: Riley, F.L. (eds) 3rd European Symposium on Engineering Ceramics. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-7990-4_9

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-7990-4_9

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-011-7992-8

  • Online ISBN: 978-94-011-7990-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics