Skip to main content

Abstract

Ceramic manufacturing processes are advancing vigorously at the present time. Although most engineering ceramics are still made by the traditional powder pressing, slip casting or extrusion routes, followed by green machining, firing and diamond machining,1 there is a growing use of novel processes in the technical areas of engineering ceramics.2 Vapour deposition, sol-gel processing, reaction forming and colloidal processing immediately spring to mind as examples. These areas may be relatively small in commercial terms at the moment, but they represent a revolutionary change in process thinking.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 16.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Mangels, J. A. (ed.), Forming of ceramics. American Ceramic Society. Columbus, OH, 1984.

    Google Scholar 

  2. Alford, N. McN., Birchall, J. D. and Kendall, K., Engineering ceramics–the process problem, Mater. Sci and Technol., 2 (1986) 329–36.

    Article  CAS  Google Scholar 

  3. Birchall, J. D., Bradbury, J. A. A. and Dinwoodie, J., Alumina fibres–preparation, properties and applications, Handbook of composites, Vol. 1, W. Watt and B. V. Perov, (eds), Elsevier, Amsterdam, 1985, pp. 115–54.

    Google Scholar 

  4. Kendall, K., Birchall, J. D. and Howard, A. J., The relation between porosity, microstructure and strength, and the approach to advanced cement-based materials, Phil. Trans. R Soc. Lond., A310 (1983) 139–53.

    Article  CAS  Google Scholar 

  5. Alford, N. McN., Birchall, J. D., Clegg, W. J., Harmer, M. A. and Kendall, K., Physical and mechanical properties of YBa2 Cu3O7−d Superconductors, J Mater. Sci., 23 (1988) 761–8.

    Article  CAS  Google Scholar 

  6. Kishimoto, A., Koumoto, K., and Yanagida, H., Comparison of mechanical and dielectric strength distributions for variously surface finished titanium dioxide ceramics, J Am. Ceram. Soc., 72 (1989) 1373–6.

    Article  CAS  Google Scholar 

  7. Kingery, W. D., Bowen, H. K. and Uhlmann, D. R., Introduction to ceramics, John Wiley, New York, 1976, pp. 469–513.

    Google Scholar 

  8. Norton, F. H., Fine ceramics, McGraw-Hill, New York, 1970, Chapter 10, pp. 130–56.

    Google Scholar 

  9. Larker, H. T., Dense ceramic parts hot pressed to shape by HIP. In Emergent process methods for high technology ceramics, Vol. 17, R. F. Davis, H. Palmour and R L. Porter (ed.), Plenum Press, New York, 1984, p. 571.

    Google Scholar 

  10. Wakai, F., Kadama, Y., Sakaguchi, S., Murayama, M., Izaki, K. and Niihara, K., A superplastic covalent crystal composite, Nature, 344 (1990) 421–3.

    Article  CAS  Google Scholar 

  11. Gebruder Netzsch Machinenfabrik GmbH, Technical Information Bulletin GK012, D8672 Selb, Bavaria, FRG, 1985.

    Google Scholar 

  12. Mistier, R E., Am. Ceram. Soc. Bull., 69 (1990) 1022–6.

    Google Scholar 

  13. Benbow, J. J. and Lord, L. W., Catalyst support, US Patent 3824196, 1974.

    Google Scholar 

  14. Spear, K. E., Diamond–ceramic coating of the future, J Am. Ceram. Soc., 72 (1989) 171–91.

    Article  CAS  Google Scholar 

  15. Furneaux, R. C., Rigby, W. R. and Davidson, A. P., The formation of controlled-porosity membranes from anodically oxidised aluminium. Nature, 337 (1989) 147–9.

    Article  CAS  Google Scholar 

  16. Lanxide Corp., One Tralee Industrial Park, Newark DE19711–54444, USA.

    Google Scholar 

  17. Segal, D. L. and Woodhead, J. L., Novel developments in gel processing. Brit. Ceram. Proc., 38 (1986) 245–50.

    CAS  Google Scholar 

  18. Kendall, K., Alford, N. McN., Clegg, W. J. and Birchall, J. D., Flocculation clustering and weakness of ceramics, Nature, 339 (1989) 130–2.

    Article  CAS  Google Scholar 

  19. Kendall, K, Macro defect free cements, Euro. J Engng Educ., 12 (1987) 21–5.

    Article  Google Scholar 

  20. Birchall, J. D., Inorganic fibres, Encyclopedia of materials Science and Engineering, Pergamon Press, Oxford, 1986, pp. 2333–6.

    Google Scholar 

  21. Kendall, K., Alford, N. McN., Clegg, W. J. and Birchall, J. D. Advancing ceramics through agglomerate control, Institute of Chemical Engineers — 5 Int. Symp. on Agglomeration, Institute of Chemical Engineers, Rugby, UK, 1989, pp. 355–9.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1991 Elsevier Applied Science Publishers Ltd

About this chapter

Cite this chapter

Kendall, K. (1991). Revolution in Ceramic Processing. In: Riley, F.L. (eds) 3rd European Symposium on Engineering Ceramics. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-7990-4_8

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-7990-4_8

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-011-7992-8

  • Online ISBN: 978-94-011-7990-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics