Skip to main content

Product Development with SiC and B4C Ceramics

  • Chapter

Abstract

Silicon carbide and boron carbide belong to the group of non-metallic hard materials,1 i.e. materials, whose great hardness and high melting temperature result from a high fraction of covalent bonding. Super-hard compounds are formed by appropriate combination of the four low atomic number elements boron, carbon, silicon and nitrogen as indicated by the quarternary system (Fig. 1). Carbon as diamond, boron-nitrogen as cubic boron nitride, boron-carbon as boron carbide and silicon-carbon as silicon carbide, belong to the class of hardest materials known. Further hard members of this system are silicon nitride, the silicon borides and the elements boron and silicon.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Kieffer, R. and Benesovsky, F., Hartstoffe, Springer-Verlag, Wien, 1963.

    Google Scholar 

  2. Dawihl, W. and Altmeyer, G., Grundlagen des Verschleißes hochharter Werkstoffe, Wear, 32 (1975) 291–308.

    Article  CAS  Google Scholar 

  3. Kelley, et al., Wear resistant materials for coal conversion components, Proc. Am. Conf Mat. Coal Cony. Util., 1979.

    Google Scholar 

  4. Shetty, D. K, Coal slurry erosion of reaction bonded SiC, Wear, 79 (1982) 275–9.

    Article  CAS  Google Scholar 

  5. Schöpplein, W., Flue gas desulphurisation plants-sealing effects, World Pumps, 5 (1986) 124–8.

    Google Scholar 

  6. Eisner, J. H., Gleitringdichtungen, Chemie-Anlagen + Verfahren, 46 (1982) 51, 54.

    Google Scholar 

  7. Knoch, H., Kracker, J. and Schelken, A., Bauteile aus gesintertem SiC im chemischen Apparatebau, Chemie Anlagen + Verfahren, (1983) 28–30.

    Google Scholar 

  8. Knoch, H., Kracker, J. and Schelken, A., SiC-Werkstoffe für erosiv und korrosiv beanspruchte Pumpenbauteile, Chemie-Anlagen + Verfahren, (1985) 101–4.

    Google Scholar 

  9. Knoch, H. and Kracker, J., Sintered silicon carbide — a material for corrosion and wear-resistant components in sliding applications, cfi/Ber. DKG, 64 (1987) 159–63.

    CAS  Google Scholar 

  10. Hunold, K., Greim, J. and Lipp, A., Injection moulded ceramic rotors — Comparison of SiC and Si3N4, Powder Metallurgy int., 21 (1989) 17–23.

    CAS  Google Scholar 

  11. Knoch, H., Non-oxide technical ceramics, 2nd Europ. Symp. on Engineering Ceramics, Nov. 1987, London, Riley, F. L. (ed.), Elsevier Applied Science, London, New York, 1989.

    Google Scholar 

  12. Schwetz, K. A., Reinmuth, K. and Lipp, A., Herstellung und Anwendung refraktärer Borverbindungen, Radex-Rundschau, (1981) 568–85.

    Google Scholar 

  13. Glaeser, W. A., Wear and friction of nonmetallic materials evaluation of wear testing, ASTM STP 446, 1969, pp. 42–54.

    Google Scholar 

  14. Woydt, M. and Habig, K.-H., Technisch-physikalische Grundlagen zum tribologischen Verhalten keramischer Werkstoffe, BAM-Forschungsbericht, 133, Wirtschaftsverlag NW, Bremerhaven, 1987.

    Google Scholar 

  15. Richerson, D. W., Contact stress and coefficient of friction effects on ceramic interfaces, Mat. Sic. Rex, 14 (1981) 661–76.

    CAS  Google Scholar 

  16. Miyoshi, K, Anisotropic tribological properties of SiC, Proc. Int. Conf Wear Mat., San Francisco, 1981, ASME.

    Google Scholar 

  17. Klaffke, D., Fretting wear of ceramics, Tribology Int, 22 (1989) 89–101.

    Article  CAS  Google Scholar 

  18. Woydt, M. and Habig, K.-K., High temperature tribology of ceramics. Tribology Int., 22 (1989) 75–88.

    Article  CAS  Google Scholar 

  19. Schlichting, J. and Schwetz, K. A., Oxidationsverhalten von gesintertem a-SiC, High Temperatures — High Pressures, 14 (1982) 219–23.

    CAS  Google Scholar 

  20. Czichos, H., Tribology — A systems approach to the science and technology of friction, lubrication and wear, Elsevier, Amsterdam, New York, 1978.

    Google Scholar 

  21. Victor, K. H., Tribologie, Reibung, Verschleiß, Schmierung, Band 10, Springer Verlag, Berlin, Heidelberg, New York, 1985.

    Google Scholar 

  22. Knock, H. and Sigl, L., Product development with pressureless sintered silicon carbide, In Proc. of the Silicon Carbide Conference, Atagawa — Hastsu, Higashizu, Japan, 1989.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1991 Elsevier Applied Science Publishers Ltd

About this chapter

Cite this chapter

Feinle, P., Knoch, H. (1991). Product Development with SiC and B4C Ceramics. In: Riley, F.L. (eds) 3rd European Symposium on Engineering Ceramics. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-7990-4_5

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-7990-4_5

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-011-7992-8

  • Online ISBN: 978-94-011-7990-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics