Skip to main content

Industrial Wastewater and Hazardous Materials Treatment Technology

  • Chapter
Riegel’s Handbook of Industrial Chemistry

Abstract

The gravest water quality issue now facing the nation is the disposal of industrial wastes. Other major environmental problems include medical wastes, hazardous wastes, and toxic contamination of the nation’s streams and groundwater. Municipal waste disposal and landfill issues also are very serious concerns.

Formerly Principal Engineering-Science Advisor and Research Director at EPA Headquarters, Washington, D.C. Currently consultant to industry and government

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Crusberg, Theodore C., et al., “Fungal Biotrap for Retrieval of Heavy Metals from Industrial Wastewater,” Third International Conference on New Frontiers for Hazardous Waste Management, Pittsburgh, PA, Sept. 1989.

    Google Scholar 

  2. Applications Analysis Report, “Hazcon Solidification Process, Douglasville, Pennsylvania,” EPA 540/A5–89/001.

    Google Scholar 

  3. Technology Evaluations Report, “SITE Demonstration Test, Hazcon Solidification, Douglasville, Pennsylvania,” EPA 540/5–89/001a.

    Google Scholar 

  4. Applications Analysis Report, “Shirco Infrared Incineration System,” EPA 540/A5–89/010.

    Google Scholar 

  5. Technology Evaluation Report, “SITE Program Demonstration Test, Shirco Infrared Incineration System, Peak Oil, Brandon, Florida,” EPA/540/5/88–002a.

    Google Scholar 

  6. Technology Evaluation Report, “SITE Program Demonstration Test, Shirco Pilot-Scale Infrared Thermal Incineration System, Rose Township Demode Road Superfund Site,” EPA 540/5–89/007a.

    Google Scholar 

  7. Technology Evaluation Report, “SITE Program Demonstration Test, American Combustion Pyretron Destruction System at the U.S. EPA’s Combustion Research Facility,” EPA 540/A5–89/008.

    Google Scholar 

  8. Applications Analysis Report, “Terra Vac In-Situ Vacuum Extraction System,” EPA 540/A5–89/003.

    Google Scholar 

  9. Technology Evaluation Report, “SITE Program Demonstration Test, Terra Vac In-Situ Vacuum Extraction System, Groveland Massachusetts,” EPA 540/A5–89/003a.

    Google Scholar 

  10. Technology Evaluation Report, “SITE Program Demonstration Test, International Waste Technologies In-Situ Stabilization/Solidification, Hialeah, Florida,” EPA 540–6–89/004a.

    Google Scholar 

  11. “Superfund ‘89 Conference. November 27–29, 1989,” EPA 540/8–89/010.

    Google Scholar 

Supplemental Reading

  • Bachmann, A., et al., “Biodegradation of Alpha- and Beta-Hexachlorocyclohexane in a Soil Slurry under Different Redox Conditions,” Appl. Environ. Microbiol., 54, 143 (1988).

    Google Scholar 

  • Beall, J. F., and McGathen, R., “Guidelines for Wastewater Treatment I—How to Minimize Wastewater,” Metal Finish., 75 (9), 13 (1977);

    Google Scholar 

  • Beall, J. F., and McGathen, R., “Guidelines for Wastewater Treatment I—How to Minimize Wastewater,” Metals Abs., 11 58–0007 (1978).

    Google Scholar 

  • Beccari, M., et al., “Kinetics of Dissimilatory NO3 and NO2 Reduction in Suspended Growth Culture,” J. Water Pollut. Control Fed., 55, 58 (1983).

    Google Scholar 

  • Bouwer, E. J., et al., “Anoxic Transformations of Trace Halogenated Aliphatics,” in Toxic and Hazardous Wastes, G. D. Boardman (Ed.), Proc. 18th Mid-Atl. Ind. Waste Conf., Technomic Publishing Co., Lancaster, PA, 1986.

    Google Scholar 

  • Bowers, A. R., et al., “Treatment of Toxic Refractory Wastewaters with Hydrogen Peroxide,” Water Sci. Technol., 21, 477 (1989).

    Google Scholar 

  • Brower, G. R., et al., “Control of Water Problems in a Steel Mill’s Blast Furnace Gas Wash Recirculation System,” Proc. 32nd Ind. Waste Conf., p. 549, Purdue Univ., West Lafayette, IN, 1977.

    Google Scholar 

  • Brower, G. R., et al., “Calendar of EPA Regulations under Consideration,” Pollution Eng., 10 (12), 61 (1978).

    Google Scholar 

  • Carins, J., et al., “Developing an On-site Continuous Biological Monitoring System for the Chemical Industry,” Proc. 5th WWEMA Ind. Poll. Conf., p. 285, WWEMA, McLean, VA, 1978.

    Google Scholar 

  • Carter, J. L., et al., “Comparison of a Full-Scale Anaerobic Filter with the Pilot Plant Used for Design,” Proc. Ind. Waste Symp., p. 214, Water Pollut. Control Fed., Alexandria, VA, 1986.

    Google Scholar 

  • Cole, C. A., et al., “Treatment of Toxic or Refractory Wastewaters with Hydrogen Peroxide,” J. Water Pollut. Control Fed., 48, 297 (1976).

    Google Scholar 

  • Crawford, G. V., and Teletze, G. H., “Performance of a Hybrid Anaerobic Process,” Proc. 41st Ind. Waste Conf., p. 196, Purdue Univ., West Lafayette, IN, 1986.

    Google Scholar 

  • DeAngelis, D. F., et al., “Industrial Waste Pretreatment Using CELROBIC Anaerobic Reactor,” Proc. 41st Ind. Waste Conf, p. 10, Purdue Univ., West Lafayette, IN, 1986.

    Google Scholar 

  • “Design Manual for Dewatering Municipal Wastewater Sludges,” EPA-625/1–87/014, U.S. EPA, Cincinnati, OH (1987).

    Google Scholar 

  • Donovan, M. F., et al., “Anaerobic Treatment of Sulfite Liquor Evaporator Condensate,” Proc. TAPPI Environ. Conf., 1984.

    Google Scholar 

  • Donovan, M. F., et al., “Economic Indicators,” Chem. Eng., 4, 9 (1988).

    Google Scholar 

  • Donovan, M. F., et al., Engineering News Record, McGraw-Hill Construct. Weekly, 11, No. 57 (1988).

    Google Scholar 

  • Ferguson, J. R., “Impact of EPA Regulations on the Steel Industry,” Pollution Eng., 10 (8), 23 (1978).

    Google Scholar 

  • Gibson, S. A., and Suflita, J. M., “Extrapolation of Biodegradation Results to Groundwater Aquifers: Reductive Dehalogenation of Aromatic Compounds,” Appl. Environ. Microbiol., 52, 681 (1986).

    Google Scholar 

  • Gray, K. J., “Anaerobic Pharmaceutical Pretreatment System,” Proc. Second Natl. Conf. Anaerobic Digestion Ind. Wastes, Argonne Natl. Lab., U.S. Dept. Energy, Chicago, IL, Sept. 1986.

    Google Scholar 

  • Hamza, A., et al., “Potential for Water Reuse in an Egyptian Poultry Processing Plant,” J. Food Sci., 43, 1153 (1978).

    Article  Google Scholar 

  • “Handbook for Estimating Sludge Management Costs,” EPA-625/6–85/010, U.S. EPA, Cincinnati, OH (1985).

    Google Scholar 

  • Hickman, G. T., and Novak, J. T., “Microcosm Assessment of Biodegradation Rates of Organic Compounds in Soils,” in Toxic and Hazardous Wastes, J. C. Evans (Ed.), Proc. 19 Mid-Atl. Ind. Waste Conf., Technomic Publishing Co., Lancaster, PA (1987).

    Google Scholar 

  • Howerton, D. E., and Young, J. C., “Two-Stage Cyclic Operation of Anaerobic Filters,” J. Water Pollut. Control Fed., 59, 788(1987).

    Google Scholar 

  • Lacy, W. J., “The Closed-Loop Cycle for Industrial Wastewater; The Future Pollution Solution,” Environment International, 2, 3–8 (1979).

    Article  Google Scholar 

  • Mathews, D. G., “Hydrogen Peroxide Controls Odor, Corrosion in Collection Systems,” Water Sew. Works, 124, 6 (1977).

    Google Scholar 

  • McCabe, W. L., et al., Unit Operations of Chemical Engineering, McGraw-Hill, New York, 1985.

    Google Scholar 

  • “Miles Wastewater Pretreatment Plant,” Miles Laboratory, Inc., Elkhart, IN (1986).

    Google Scholar 

  • Miyakoshi, S., “New Aspects of Sludge Incineration in Yokohama,” EPA-600/9–84–021, 8th U.S./Jap. Conf. Sewage Treatment Technol., Cincinnati, OH (1984).

    Google Scholar 

  • Nebel, C., et al., “Ozone Oxidation of Phenolic Effluents,” Proc. 31st Ind. Waste Conf., Purdue Univ., West Lafayette, IN, 1976; p. 940, Ann Arbor Science Publishers, Inc., Ann Arbor, MI, 1977.

    Google Scholar 

  • Novak, J. T., et al., “Biodegradation of Methanol and Tertiary Butyl Alcohol in Subsurface Systems,” Water Sci. Technol., 17, 71 (1985).

    Google Scholar 

  • Oh, Y. M., and Yang, B. S., “Anaerobic Wastewater Treatment Using Floating Media,” Water Sci. Technol., 18, 225 (1986).

    Google Scholar 

  • Okkes, I. A. G., “Celrobic Process for Anaerobic Treatment of Industrial Wastewater,” in Anaerobic Waste Water Treatment, W. J. van den Brink (Ed.), p. 299, AWWT Symp. Secretariat, TNO, The Hague, Netherlands (1983).

    Google Scholar 

  • Ouchi, H., “Study on Fluidized Bed Incineration with a Drying System,” EPA-600/9–85–014, 9th U.S./Jap. Conf. Sewage Treatment Technol., Tokyo (1985).

    Google Scholar 

  • Owen, W. F., et al., “Bioassay for Monitoring Biochemical Methane Potential and Anaerobic Toxicity,” Water Res., 13, 485 (1979).

    Article  Google Scholar 

  • Ragan, J. L., “Celanese Experience with Anaerobic Filters,” in Anaerobic Filters: An Energy Plus for Wastewater Treatment, ANL/CNSU-TU-50, p. 129, Argonne Natl. Lab., Argonne, IL, 1980.

    Google Scholar 

  • Rogers, C. J., “Recycling of Water in Poultry Processing Plants,” EPA 600/2–78–039, Cincinnati, OH (1978).

    Google Scholar 

  • Sheridan, R. P., “The Evolution of Anaerobic Treatment of Industrial Wastewaters,” paper presented at the Am. Inst. Chem. Eng. Summer Natl. Meeting, Cleveland, OH, 1984.

    Google Scholar 

  • Smith, J. A., and Novak, J. T., “Biodegradation of Chlorinated Phenols in Subsurface Aquifers,” Appl. Environ. Microbiol., 53, 710(1987).

    Google Scholar 

  • Speece, R. E., “Anaerobic Biotechnology for Industrial Wastewater Treatment,” Environ. Sci. Technol., 17, 416A (1983).

    Article  Google Scholar 

  • Sulflita, J. M., and Miller, G. D., “Microbial Metabolism of Chlorophenolic Compounds in Ground Water Aquifers,” Environ. Toxicol. Chem., 4, 751 (1985).

    Article  Google Scholar 

  • Szendrey, L. M., “Startup and Operation of the Bacardi Corporation Anaerobic Filter,” Proc. Third Int. Symp. Anaerobic Digestion, p. 363 Boston, MA, 1983.

    Google Scholar 

  • “The Cost Digest: Cost Summaries of Selected Environmental Control Technologies,” EPA-600/8–84–010, U.S. EPA, Cincinnati, OH (1984).

    Google Scholar 

  • Ulrich, G. D., Guide to Chemical Engineering Process Design and Economics, John Wiley & Sons, New York, 1984.

    Google Scholar 

  • van der Berg, L., et al., “Anaerobic Downflow Stationary Fixed-Film Reactors: Performance under Steady-State and Non-Steady-State Conditions,” Proc. Sem. Anaerobic Fixed-Film Digestion, Pollut. Control Assoc, p. 1, Ontario, Canada, Nov. 1986.

    Google Scholar 

  • van den Berg, L., and Lentz, C. P., “Effects of Film Area-to-Volume Ratio, Film Support, Height and Direction of Flow on Performance of Methanogenic Fixed-Film reactors,” in Anaerobic Filters: An Energy Plus for Wastewater Treatment, AHL/CNSU-TU-50, Argonne Natl. Lab., Argonne, IL, 1980.

    Google Scholar 

  • Vater, W., “Energy Savings Sludge Incineration in Stuttgart’s Central Sewage Works, F.R.G.,” Water Sci. Technol., 16, 531 (1984).

    Google Scholar 

  • Wang, Y. T., et al., “Effects of Preozonation on the Anaerobic Biodegradability of o-Cresol,” J. Envir. Eng. Div., Proc. Am. Soc. Civ. Eng., 115, 336 (1989).

    Google Scholar 

  • Wang, Y. T., et al., “The Effect of Concentration of Phenols on Their Batch Methanogenesis,” Biotechnol. Bioeng., 33, 1353 (1989).

    Article  Google Scholar 

  • Wilkie, A., et al., “Media Effects in Anaerobic Filters,” in Anaerobic Waste Water Treatment, W. J. van den Brink (Ed.), p. 242, AWWT Symp. Secretariat, TNO, The Hague, Netherlands (1983).

    Google Scholar 

  • Williamson, K., and McCarty, P. L., “A Model for Substrate Utilization by Bacterial Films,” J. Water Pollut. Control Fed., 48, 9 (1976).

    Google Scholar 

  • Williamson, K., and McCarty, P. L., “Verification Studies of the Biofilm Model for Bacterial Substrate Utilization by Bacterial Films,” J. Water Pollut. Control Fed., 48, 9 (1976).

    Google Scholar 

  • Witt, E. R., et al., “Full-Scale Anaerobic Filter Treats High Strength Waste,” Proc. 34th Ind. Waste Conf., Purdue Univ., West Lafayette, IN, 1979.

    Google Scholar 

  • Wittle, T. E., “Design and Startup of an Anaerobic Treatment System for Food Processing Wastewater,” paper presented at the Food Process. Waste Conf., Georgia Tech. Res. Inst., Atlanta, GA, 1988.

    Google Scholar 

  • Woods, D. R., and Anderson, S., “Evaluation of Capital Cost Data: Drives,” Can. J. Chem. Eng., 4, 357 (1975).

    Article  Google Scholar 

  • Young, H. W., and Young, J. C., “Hydraulic Characteristics of Upflow Anaerobic Filters,” J. Environ. Eng., 114, 621 (1988).

    Article  Google Scholar 

  • Young, H. W., and Young, J. C., “Full-Scale Treatment of Chemical Process Waste Using Anaerobic Filters,” Proc. Ind. Waste Symp., Dallas, TX, 1988.

    Google Scholar 

Download references

Authors

Editor information

James A. Kent Ph.D.

Rights and permissions

Reprints and permissions

Copyright information

© 1992 Van Nostrand Reinhold

About this chapter

Cite this chapter

Lacy, W.J. (1992). Industrial Wastewater and Hazardous Materials Treatment Technology. In: Kent, J.A. (eds) Riegel’s Handbook of Industrial Chemistry. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-7691-0_3

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-7691-0_3

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-011-7693-4

  • Online ISBN: 978-94-011-7691-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics