Skip to main content

Summary

The risk of fatigue fractures of the femoral stem in a cemented total hip arthroplasty can be minimized by either incrinsing the stem cross section and/or using very high strength alloys. The aim of this experiment was to evaluate important mechanical characteristics of five selected stems, differing in design and material (stainless steel, chrome cobalt alloy, nickel based alloy, titanium alloy and carbon-carbon composite). Strain gages were glued on the lateral and medial aspects of each stem. After cementing into cadaver femurs, each stem was loaded up to 3000 N in a tension-compression machine and the stress patterns were recorded. Regardless of stem type, the typical stress distribution was a bell shaped curve. For cobalt chrome alloy and stainless steel stems, the larger stems resulted in lower stresses and higher factors of safety. The factor of safety was increased even further when using super alloys such as MP35N and Ti6A14V. Low modulus materials i.e. carbon-carbon composites exhibited lower stresses resulting in a safety factor close to MP35N. In addition, low modulus materials allowed the use of larger and stronger stems without the extra penalty of a high rigidity which was enforced by either the steel or cobalt based alloys.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. -Bartel D.L., Desormeaux S.G., Femoral stem performance. In: Proc. Symp. Retrieval and analysis of orthopaedic implants. (Ed. by Weinstein E., Horswitz E., Ruff A.W.), Dept. of Commerce, National Bureau of Standard, Special pubication, 1973.

    Google Scholar 

  2. -Chao E.Y.S., Coventry M.B. Fracture of femoral component after total hip replacement. An analysis of 58 cases. J. Bone Jt. Surg., 1981, 63A, p.1078–1094.

    Google Scholar 

  3. -Crowinshield R.D., Brand R.A., Johnston R.C., Milroy J.C. An analysis of femoral component stem design in total hip arthroplasty. J. Bone Jt. Surg., 1980, 62A, p.68–78.

    Google Scholar 

  4. -Dobbs H.S. The fracture of femoral components-an act of God? Eng. in Med., 1980, 8, p.237–240.

    Article  Google Scholar 

  5. -Ducheyne P., De Meester P., Aernoudt E., Martens M., Mulier J. Fatigue fractures of the femoral component of Charnley and Charnley Muller type total hip prostheses. J. Biomed. Mater. Res. Symp., 1975, 6, p.199–219.

    Article  Google Scholar 

  6. -Martens M., Aernoudt E., De Meester P., Ducheyne P., Mulier J., Delangh R., Kesterlijn P. Factors in the mechanical failure of the femoral component in total hip prostheses. Acta Orthop. Scand., 1974, 45, p.693–710.

    Article  Google Scholar 

  7. -Miller E.H., Shastri R., Shih C.I. Fracture failure of a forged vitallium prosthesis. J. Bone Jt. Surg., 1982, 64A, p.1359–1363.

    Google Scholar 

  8. -Charnley J., Fracture of femoral prostheses in total hip replacements -a clinical study. Clin. Orthop. 111, 1974, p.105–120.

    Google Scholar 

  9. -Crowinshield R.D., Brand R.A., Johnston R.C., Pedersen P.R. An analysis of collar function and the use of titanium in femoral prostheses. Clin. Orthop., 1981, 158, p.260–277.

    Google Scholar 

  10. -Galante J., Rostoker W., Doyle J. Failed femoral stems in total hip prostheses. J. Bone Jt. Surg., 1975, 57A, p.230–236.

    Google Scholar 

  11. -Galante J.O., Causes of fractures of the femoral component in total hip replacement. J. Bone Jt. Surg., 1980, 62A, p.670–673.

    Google Scholar 

  12. -Huiskes R., Some fundamental aspects of human joint replacement. Acta Orthop. Scand., 1979, 185, p.208.

    Google Scholar 

  13. -Wroblewski B.M. The mechanism of fracture of the femoral prosthesis in total hip replacement. Int Orthop (SICOT), 1979, 3, p.137–141.

    Google Scholar 

  14. -Marmor L., Gruen T.A. Stem fracturesd of heavy cobra femoral hip prostheses — Report of two cases. Clin. Orthop., 1984, 190, p.148–153.

    Google Scholar 

  15. -Mollan R.A.B., Watters P.H., Steel R., McClelland J. Failure of the femoral component in the Howse total hip arthroplasty. Clin. Orthop., 1984, 190, p.142–147.

    Google Scholar 

  16. -Williams D.F., Roaf R., Implant in surgery. London, Saunders W.B. Company Ltd. 1973.

    Google Scholar 

  17. -Miles A.W., Dall D.M., Some design considerations on the stems of total hip replacement prostheses. S. Afr. J. Surg., 1978, 16, p. 157–165.

    Google Scholar 

  18. -Espiritu E.T., Rao S., Sew Hoy, Clarke I.C., Sarmiento A., A method for quantifying stiffness parameters of titanium alloy femoral stem and cobalt-chrome alloy prosthesese. In: Titanium Alloys in Surgical Implants (Ed. by Luckey H.A., Kubli F. Jr), ASTM STP 786, American Society for Testing and Materials, 1983, p.74–87.

    Chapter  Google Scholar 

  19. -Reuben J.D., Eismont F.J., Burstein A.M., Wright T.M. Comparative mechanical properties of forty five total hip stems. Clin. Orthop., 1979, 141, p.55–65.

    Google Scholar 

  20. -Pauwels F. Die bedentung der bauprinzigien des stutz — und bewegungsapparates fur die beanspruchung der rohenknochen. Z. Anat. Entwickl. Gesch., 1948, 114, p.129–166.

    Article  Google Scholar 

  21. -Rohlman A., Bergmann G., Kolbel R. Die bean-sprunchung des femur. II. Einfluss des Trachius ilio tibialis. Z. Orthop., 1981, 119, p.163–165.

    Article  Google Scholar 

  22. -Rohlman A., Bergmann G., Kolbel R. The relevance of stress computation in the femur with and without endoprostheses. In: Finite Elements in Biomechanics (Ed. by Gallagher R.H., Simon B.R., Johnson P.C.), Chichester, J. Wiley Pub., p.361–372, 1982.

    Google Scholar 

  23. -Cordey J., Perren S.M., Charges physiologiques sur les fémurs humains dans le plan frontal: estimation de la force appliquée par le tractus ilio-tibialis. J. Bioph. Biomec, 1985, 4, p.386–387.

    Google Scholar 

  24. -Collis D.K., Femoral stem failure in total hip replacement. J. Bone Jt. Surg., 1977, 59A, p.1033–1041.

    Google Scholar 

  25. -Engh C.A., Bobyn J.D., Glassman A.H., Porous-coated hip replacement-The factor governing bone ingrowth, stress shielding and clinical results. J. Bone Jt. Surg., 1987, 69B, p.45–55.

    Google Scholar 

  26. -Meunier A., Christel P., Blanquaert D., Sedei L., Witvoet J. Experimental analysis of collar function in THR related to material rigidity. In: Proceeding of the 8th annual meeting of the Society for Biomaterials, Orlando, Fl, 138, 1982.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1989 Biomaterials Research Group

About this paper

Cite this paper

Meunier, A., Christel, P., Sedel, L. (1989). Role of Design and Material on Stress Distributions of Cemented Hip Prostheses. In: Williams, K.R., Lesser, T.H.J. (eds) Proceedings of the First International Conference on Interfaces in Medicine and Mechanics. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-7477-0_22

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-7477-0_22

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-011-7479-4

  • Online ISBN: 978-94-011-7477-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics