Skip to main content

Design Parameters for Offshore Sands: Use of In Situ Tests

  • Conference paper
Offshore Site Investigation

Part of the book series: Advances in Underwater Technology and Offshore Engineering ((AUTOO,volume 3))

  • 177 Accesses

Abstract

Traditionally, North Sea sands have been tested by laboratory tests on reconstituted samples and by in situ cone penetration tests. A number of other in situ test devices are already available for offshore use or will most likely be available in the near future. These include the piezocone, the pressure-meter, the dilatometer, nuclear density and electrical resistivity probes, the seismic cone and the screw plate.

The present status of interpretation of the above tests in terms of the following soil design parameters is discussed: soil density, drained shear strength, deformation characteristics, initial shear modulus, and soil layering and soil identification. In addition, the need for obtaining samples and performing laboratory tests is stressed. The results from in situ tests give the basis for reconstituting specimens for laboratory testing (soil density and consolidation stresses).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aas, G. 1977. Sammenstilling av styr-keparametre og spenningsmoduler for sand besternt ved in situ malinger og laboratoriekors0k. Geoteknikkdagen Proc., pp. 32.1–32.20

    Google Scholar 

  2. Aas, G. 1981. Setninger av bygg pa sand. Bestemmelse av jordartsparametre for bruk ved setningsberegninger. NGI Report 52409-8, 10 February 1981.

    Google Scholar 

  3. Aas, G., Lacasse, A., Lunne, T. and Madshus, C. 1984. In situ testing: new developments. In Proc. Nordiska Geotek-nikemnøtet, Linkøping, 1984, Vol. 2, pp. 705–716.

    Google Scholar 

  4. Baldi, G., Bellotti, R., Ghionna, V., Jamiolowski, M. and Pasqualini, E. 1982. Design parameters for sands from CPT. In Proceedings of European Symposium on Penetration Testing, Amsterdam, 1982. Balkema, Rotterdam, Vol. 2, pp. 425–432.

    Google Scholar 

  5. Baldi, G., Belotti, R., Ghionna, V., Jamilkowski, M. and Pasqualini, E. 1985. Penetration resistance and liquefaction of sands. Paper to 11th International Conference on Soil Mechanics and Foundation Engineering, San Francisco, August 1985.

    Google Scholar 

  6. Bellotti, R., Ghionna, V., Jamiolkowski, M., Manassero, M. E. and Pasqualini, E. 1983. Evaluation of sand strength from CPT. Presented at International Symposium on Soil and Rock Investigations by In Situ Testing, Paris, 18–20 May 1983.

    Google Scholar 

  7. Berzins, W. E. and Campanella, R. G. 1981. Development of the screw plate test for in situ determination of soil parameters. Soil Mech. Series No. 48, Department of Civil Engineering, University of British Columbia, May 1981.

    Google Scholar 

  8. Boghrat, A. 1982. The design and construction of a piezoblade and an evaluation of the Marchetti dilatometer in some Florida soils. PhD thesis, University of Florida.

    Google Scholar 

  9. Burgess, N. C., Hughes, J. M. O., Innes, R. and Gladowe, J. 1983. Site investigation and in situ testing techniques in Arctic seabed sediments. OTC, Houston, May 1983.

    Google Scholar 

  10. Douglas, B. J. and Olsen, R. S. 1981. Soil classification using electric cone penetro-meter. In Cone Penetration Testing and Experience, Proceedings of a session at the ASCE National Convention, St Louis, Missouri, 1981. American Society of Civil Engineers, pp. 209–227.

    Google Scholar 

  11. Durgunoglu, H. T. and Mitchell, J. K. 1975. Static penetration resistance of soils, I–II. In Proceedings of Conference on In Situ Measurement of Soil Properties, Raleigh, North Carolina, 1975. American Society of Civil Engineers, Vol. 1, pp. 151–189.

    Google Scholar 

  12. Eidsmoen, T., Gillespie, D., Lunne, T. and Campanella, R. G. 1985. Tests with UBC seismic cone at three Norwegian research sites. NGI and UBC joint report, 59040-1, 20 December 1984.

    Google Scholar 

  13. Fahey, M. and Ranolph, M. F. 1984. Effect of disturbance on parameters derived from self-boring pressuremeter tests in sand. Geotechnique 34(1), 81–97.

    Article  Google Scholar 

  14. Fay, J. B. and Le Tirant, P. 1982. Offshore self-boring pressuremeter for deep water. Symposium on the Pressuremeter and its Marine Application, Paris. Editions Technip. Paris, pp. 305–324.

    Google Scholar 

  15. Campanella, R. G., Gillespie, D. and Robertson, P. K. 1982. Pore pressures during cone penetration testing. In Proceedings of the 2nd European Symposium on Penetration Testing, Amsterdam, Vol. 2, pp. 507–512.

    Google Scholar 

  16. Campanella, R. G. and Robertson, P. K. 1983. Flat plate dilatometer testing: Research and development. Soil Mech. Series No. 68, Department of Civil Engineering, University of British Columbia, January 1983.

    Google Scholar 

  17. Campanella, R. G. and Robertson, P. K. 1984. A seismic cone penetrometer to measure engineering properties of soil. Paper presented at the Society of Exploration Geophysicists’ 54th Annual Meeting, Atlanta.

    Google Scholar 

  18. Campanella, R. G. 1985. Personal communication.

    Google Scholar 

  19. Campanella, R. G., Robertson, P. K., Gillespie, D. G. and Greig, J. 1985. Recent developments in in situ testing of soils. Paper to 11th International Conference on Soil Mechanics and Foundation Engineering, San Francisco, August 1985.

    Google Scholar 

  20. Chapman, G. A. 1979. The interpretation of friction cone penetrometer tests in sand. PhD thesis, Department of Civil Engineering, Monash University, Australia.

    Google Scholar 

  21. Hughes J. M. O. Wroth C. P. and Windle D. 1977. Pressuremeter tests in sands. Geotechnique 274 455–477.

    Google Scholar 

  22. Jamiolkowski, M., Ladd, C. C., Germaine, J. T. and Lancelotta, R. 1985. New developments in field and laboratory testing of soils. Paper to 11th International Conference on Soil Mechanics and Foundation Engineering, San Francisco, August 1985.

    Google Scholar 

  23. Janbu, N. C. 1970. Grunnlag i Geoteknikk. Tapir, 426 p.

    Google Scholar 

  24. Janbu, N. and Senneset, K. 1973. Field compressometer — principles and applications. In Proceedings of 8th International Conference on Soil Mechanics and Foundation Engineering, Moscow, Vol. 1.1, pp. 191–198.

    Google Scholar 

  25. Janbu, N. and Senneset, K. 1975. Effective stress interpretation of in situ static penetration tests. In Proceedings of European Symposium on Penetration Testing, Stockholm, 1974, Vol. 2.2, pp. 181–193.

    Google Scholar 

  26. Kroezen, M. 1981. Measurement of in situ density in sandy/silty soils. Can. Geotech. Soc. Newslett. 18(4), 13–15.

    Google Scholar 

  27. Lacasse, S. and Lunne, T. 1982. Penetration tests in two Norwegian clays. In Proceedings of 2nd European Symposium on Penetration Testing, Amsterdam, 1982. Balkema, Rotterdam, Vol. 2, pp. 661–669.

    Google Scholar 

  28. Last, N. 1985. Proceedings from Seminar on Cone Penetration Testing in the Laboratory, Southampton University, November 1984.

    Google Scholar 

  29. Lunne, T. and Christoffersen, H. P. 1983. Interpretation of cone penetrometer data for offshore sands. In Proceedings of 15th Offshore Tech. Conf, Houston, Texas, 1983, Vol. 1, pp. 181–192.

    Google Scholar 

  30. Marchetti, S. 1980. In situ tests by flat dilatometer. ASCE, JGED, V. 106, No. GT3, pp. 299–321.

    Google Scholar 

  31. Marchetti, S. and Crapps, D. K. 1981. Flat Dilatometer Manual. Gainesville, Florida.

    Google Scholar 

  32. Meyerhof, G. G. 1961. The ultimate bearing capacity of wedge-shaped foundations. In Proceedings of 5th International Conference on Soil Mechanics and Foundation Engineering, Paris, Vol. 2, pp. 105–109.

    Google Scholar 

  33. Mitchell, J. K. 1976. Fundamentals of Soil Behaviour. John Wiley, New York.

    Google Scholar 

  34. Mitchell, J. K. and Lunne, T. A. 1978. Cone resistance as measure of sand strength. Proc. Am. Soc. Civ. Engrs 104 (GT7), 995–1012.

    Google Scholar 

  35. Mitchell, J. K. 1985. Personal communication.

    Google Scholar 

  36. Parkin, A., Holden, J., Aamot, K., Last, N. and Lunne, T. 1980. Laboratory investigations of CPT’s in sand. Report 52108-9, Norwegian Geotechnical Institute.

    Google Scholar 

  37. Parkin, A. K. and Lunne, T. 1982. Boundary effects in the laboratory calibration of a cone penetrometer for sand. In Proceedings of 2nd European Symposium on Penetration Testing, Amsterdam, 1982. Balkema, Rotterdam, Vol. 2, pp. 761–768.

    Google Scholar 

  38. Reid, W. M., St. John, H. D., Fyffe, S. and Rigden, W. J. 1982. The push-in pres-suremeter. 37th Symposium on the Pres-suremeter and its Marine Applications. Editions Technip, Paris, pp. 247–261.

    Google Scholar 

  39. Robertson, P. K. and Campanella, R. G. 1983. Interpretation of cone penetration tests. Part I: Sand. Can. Geotech. J. 20(4), 718–733.

    Article  Google Scholar 

  40. Robertson, P. K. and Campanella, R. G. 1984. Liquefaction potential of sands using the DMT. Technical note, submitted to ASCE, JGED, April 1984.

    Google Scholar 

  41. Ruiter, J. de 1982. The static cone penetration test state-of-the-art report. In Proceedings of 2nd European Symposium on Penetration Testing, Amsterdam, Vol. 2, pp. 389–405.

    Google Scholar 

  42. Schmertmann, J. H. 1978. Guidelines for cone penetration test: performance and design. Report TS-78-209, Department of Transportation, Federal Highway Administration Offices of Research and Development, Washington, DC.

    Google Scholar 

  43. Schmertmann, J. S. 1982. A method for determining the friction angle in sands from the Marchetti dilatometer test. In Proceedings of 2nd European Symposium on Penetration Testing, Amsterdam, Vol. 2, pp. 853–861.

    Google Scholar 

  44. Senneset, K. and Janbu, N. 1984. Shear strength parameters obtained from static cone penetration tests. ASTM Symposium, San Diego, 1984.

    Google Scholar 

  45. Tjelta, T. I., Tieges, A. W. W., Smits, F. P., Geise, J. M. and Lunne, T. 1985. In situ density measurements by nuclear backscat-ter for an offshore soil investigation. Offshore Technology Conference Proceedings, May 1985, Paper 4917. (In press.)

    Google Scholar 

  46. Vesic, A. S. 1973. Analysis of ultimate loads of shallow foundations. Proc. Am. Soc. Civ. Engrs 99 (SMI), 45–73.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1985 Society for Underwater Technology

About this paper

Cite this paper

Lunne, T., Lacasse, S., Aas, G., Madshus, C. (1985). Design Parameters for Offshore Sands: Use of In Situ Tests . In: Offshore Site Investigation. Advances in Underwater Technology and Offshore Engineering, vol 3. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-7358-2_17

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-7358-2_17

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-011-7360-5

  • Online ISBN: 978-94-011-7358-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics