Skip to main content

In Situ Testing and Sampling Offshore in Water Depths Exceeding 300 m

  • Conference paper
Offshore Site Investigation

Part of the book series: Advances in Underwater Technology and Offshore Engineering ((AUTOO,volume 3))

Abstract

In this paper ‘deep water’ is defined as being at depths greater than 300 m. A few past events in deep-water testing and sampling which are relevant to the development of new equipment are reviewed; and some deep-water geotechnical problems that require the development of new equipment for their investigation are discussed. The paper also contains a summary of new testing and sampling equipment either at present in use or under development for deep-water site investigations. It looks at future developments by industry in water depths of less than 1000 m and by government and academe in water depths exceeding 4000 m. Most new testing and sampling equipment discussed has been developed or deployed since about 1982.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aas., J., Lacasse, S., Lunne, T. and Mad-shus, C. 1984. In situ testing: new developments. Nordiska Greteknikermøtet. Vol. 2: Linköping, pp. 705–716 (Reproduced in Norwegian Geotechnical Institute Publication Nr. 153, 1984).

    Google Scholar 

  2. Abbott, D., Menke, W., Hobart, M. and Anderson, R. 1981. Evidence for excess pore pressures in southwest Indian Ocean sediments. J. Geophys. Res. 86(B3), 1813–1827.

    Article  Google Scholar 

  3. Amundsen, T., Lunne, T., Christopherson, H. P., Bayne, J. M. and Barnwell, C. 1985. Advanced deep-water soil investigation at the Troll East Field. Paper 11, this volume.

    Google Scholar 

  4. Anderson, V. C., Clinton, J. R., Gibson, D. K. and Kirsten, O. H. 1972. Instrumenting RUM for in situ subsea soil surveys. Underwater Soil Sampling, Testing, and Construction Control. Special Technical Publication 501, American Society for Testing and Materials, Philadelphia, pp. 216–231.

    Google Scholar 

  5. Andresen, A. 1981. Exploration, sampling and in situ testing of soft clay. In Soft Clay Engineering (Eds E. W. Brand and R. P. Brenner). Elsevier, Amsterdam, pp. 241–308.

    Google Scholar 

  6. Ardus, D. A., Skinner, A., Owens, R. and Pheasant, J. 1982. Improved coring techniques and offshore laboratory procedures in sampling and shallow drilling. Oceanology International Exhibition and Conference Papers, Vol. 2, Paper 5.8.

    Google Scholar 

  7. Arrhenius, G. 1952. Sediment cores from the east Pacific. In Reports of the Swedish Deep-Sea Expedition 1947–1948, Vol. 5, pp. 1–227.

    Google Scholar 

  8. Babb, J. D. and Silva, A. J. 1983. An in situ vane system for measuring deep sea sediment shear strength. In Oceans 83 Proceedings, Vol. 1, pp. 598–607.

    Article  Google Scholar 

  9. Beard, R. M. 1977. Expendable doppler penetrometer: a performance evaluation. Report No. TR-855, US Navy Civil Engineering Laboratory.

    Google Scholar 

  10. Beard, R. M. In press. Expendable doppler penetrometer for deep ocean sediment strength measurements. In Strength Testing of Marine Sediments: Laboratory and In-Situ Measurements (Eds R. C. Chaney and K. R. Demars). Special Technical Publication 883, American Society for Testing and Materials, Philadelphia.

    Google Scholar 

  11. Beard, R. M. and Johnson, B. A. 1984. XSP cone penetrometer: a performance evaluation. Report No. TR-911, US Navy Civil Engineering Laboratory. 11a. Beard, R. M. and Lee, H. J. 1982. A 40-foot static cone penetrometer. Offshore Technology Conference Proceedings, Vol. 2, Paper 4300, pp. 809-818.

    Google Scholar 

  12. Bennett, R. H., Burns, J. T., Clarke, T. L., Faris, J. R., Forde, E. B. and Richards, A. F. 1982. Piezometer probes for assessing effective stress and stability in submarine sediments. In Marine Slides and Other Mass Movements (Eds S. Saxov and J. K. Nieuwenhuis). Plenum Press, London, pp. 129–161.

    Chapter  Google Scholar 

  13. Bennett, R. H., Burns, J. T., Lipkin, J. and Percival, C. N. 1983a. Piezometer probe technology for geotechnical investigations in coastal and deep-ocean environments. In Twelfth Transducer Workshop Proceedings (Eds L. Bates and K. D. Cox). Secretariat, Range Commanders Council, Telemetry Group, White Sands Missile Range, New Mexico, pp. 377–404.

    Google Scholar 

  14. Bennett, R. H., Lambert, D. N., Hulbert, M. H., Burns, J. I., Sawyer, W. B. and Freeland, G. L. 1983b. Electrical resistivity/conductivity in seabed sediments. In CRC Handbook of Geophysical Exploration at Sea (Ed. R. A. Geyer). CRC Press, Boca Raton, p. 333–375.

    Google Scholar 

  15. Bennett, R. H., Nastav, F. L. and Bryant, W. R. 1984. Strength measurements. Sedimentology, Physical Properties, and Geochemistry in the Initial Reports of the Deep Sea Drilling Project. Vols 1-44: An Overview (Ed. G.R.). Report MGG-1, US Department of Commerce, Boulder, Colorado, pp. 129–146.

    Google Scholar 

  16. Bennett, R. H., Burns, J. T. and Nastav, F. L. In press, a. Deep-ocean piezometer probe technology. IEEE J. Oceanic Engng.

    Google Scholar 

  17. Bennett, R. H., Huon, L., Valent, P. J., Lipkin, J. and Esrig, M. I. In press, b. In situ undrained shear strengths and permeabilities derived from piezometer measurements. In Strength Testing of Marine Sediments: Laboratory and In-Situ Measurements (Eds R. C. Chaney and K. R. Demars). Special Technical Publication 883, American Society for Testing and Materials, Philadelphia.

    Google Scholar 

  18. Benoit, C. 1983. Einsatz eines ferngelenkten Unterwasser-Boden-Untersuchungsgerätes (First experiences with an underwater soil investigation crawler). Meerestechnik 14(1), 3–7.

    Google Scholar 

  19. Berg, A. P. van den, 1984. Developments in static cone penetrometering of the seabed. Underwater Systems Design 6(5), 28–31.

    Google Scholar 

  20. Briaud, J.-L. and Meyer, B. 1983. In situ tests and their application in offshore design. Geotechnical Practice in Offshore Engineering (Ed. S. G. Wright). American Society of Civil Engineers, New York, pp. 244–266.

    Google Scholar 

  21. Brooks, J. M., Kennicutt, M. C., II, Fay, R. R. and McDonald, T. J. 1984. Ther-mogenic gas hydrates in the Gulf of Mexico. Science 225(4660), 409–411.

    Article  Google Scholar 

  22. Brucy, F., Fay, J. B. and Le Tirant, P. 1984. Three years’ experience with the offshore self-boring pressuremeter ‘PAM’ Offshore Technology Conference Proceedings, Vol. 1, Paper 4677, pp. 265–274.

    Google Scholar 

  23. Bruzzi, D. 1983. Underwater static penet-rometer. International Symposium Soil and Rock Investigations by In-Situ Testing, Vol. 2, pp. 223–226.

    Google Scholar 

  24. Burgess, N. C., Hughes, J. M. O., Innes, R. and Gleadowe, J. 1983. Site investigation and in-situ testing techniques in Arctic seabed sediments. Offshore Technology Conference Proceedings, Vol. 3, Paper 4583, pp. 27–34.

    Google Scholar 

  25. Campanella, R. G. and Robertson, P. K. 1982. State of the art in in-situ testing of soils: developments since 1978. Soil Mechanics Series No. 56, The University of British Columbia, Vancouver.

    Google Scholar 

  26. Campanella, R. G. and Robertson, P. K. 1984. A seismic cone penetrometer to measure engineering properties of soil. Paper presented at the Society of Exploration Geophysicists’ 54th Annual Meeting, Atlanta.

    Google Scholar 

  27. Capelle, J.-F. 1984. A new instrument for the in situ measurement of the permeability of clays: the self boring non-clogging permeater. Field Measurements in Geomechanics, Vol. 1 (Ed. K. Kovari). A.A. Balkema, Rotterdam, pp. 49–57.

    Google Scholar 

  28. Carson, B. 1977. Tectonically induced deformation of deep-sea sediments off Washington and northern Oregon: mechanical consolidation. Mar. Geol. 24, 289–307.

    Article  Google Scholar 

  29. Carson, B., von Huene, R. and Arthur, M. 1982. Small scale deformation structures and physical properties related to convergence in Japan Trench slope sediments. Tectonics 1(3), 277–302.

    Article  Google Scholar 

  30. Carson, B., Ritger, S. D. and Suess, E. 1984. Precipitation of carbonate crust associated with subduction-induced pore-water expulsion: Washington-Oregon conti-nental slope. Abstract, EOS Trans Am. Geophys. Union 65(45), 1089–1090.

    Google Scholar 

  31. Chaney, R. C. and Fang, H.-Y. In press. Static and dynamic properties of marine sediments. First Shanghai Symposium on Marine Geotechnology and Nearshore/Offshore Structures (Eds R. C. Chaney and H.-Y. Fang). Special Technical Publication, American Society for Testing and Materials, Philadelphia.

    Google Scholar 

  32. Chari, T. R., Abdel-Gawad, S. M. and Chaudhuri, S. N. 1979. Geotechnical survey of the seafloor with a free fall penetrometer. POAC 79, Fifth International Conference on Port and Ocean Engineering Under Arctic Conditions Proceedings, Vol. 2. The Norwegian Institute of Technology, Trondheim, pp. 833–843.

    Google Scholar 

  33. Colp, J. L., Caudle, W. N. and Schuster, C. L. 1975. Penetrometer system for measuring in-situ properties of marine sediments. In Oceans 75 Conference Records, Institute of Electrical and Electronics Engineers, and Marine Technology Society, pp. 405–411.

    Google Scholar 

  34. Cyr, R. J. 1984. Sea-bed surveys by acoustic penetrometer. Oceanology International, Paper 1.7.

    Google Scholar 

  35. Dahlberg, R. 1974. Penetration testing in Sweden. In Proceedings of the European Symposium on Penetration Testing, Vol. 1, pp. 115–131.

    Google Scholar 

  36. Demars, K. R. and Taylor, R. J. 1971. Naval seafloor soil sampling and in-place test equipment: a performance evaluation. Report No. 730, US Navy Civil Engineering Laboratory.

    Google Scholar 

  37. Denk, E. W., Dunlap, W. A., Bryant, W. R., Milberger, L. J. and Whelan, T. J., III, 1981. A pressurized core barrel for sampling gas-charged marine sediments. In Offshore Technology Conference Proceedings, Vol. 4, pp. 43–52.

    Google Scholar 

  38. Driscoll, A. H. 1981. The long coring facility, new techniques in deep ocean coring. In Oceans 81 Conference Records, Vol. 1. Institute of Electrical and Electronics Engineers, and Marine Technology Society, pp. 404–410.

    Google Scholar 

  39. Duin, E. J. Th., Mesdag, C. S. and Kok, P. T. J. 1984. Faulting in Madeira Abyssal Plain sediments. Mar. Geol. 56, 299–308.

    Article  Google Scholar 

  40. Fay, J. B., Montarges, R., Le Tirant, P. and Brucy, F. 1985. Use of the PAM self-boring pressuremeter and the STACOR large-size fixed-piston corer for deep seabed surveying. Paper 12, this volume.

    Google Scholar 

  41. Ferguson, G. H., McClelland, B. and Bell, W. D. 1977. Seafloor cone penetrometer for deep penetration measurements of ocean sediment strength. Offshore Technology Conference Proceedings, Vol. 1, Paper 2787, pp. 471–478.

    Google Scholar 

  42. Flodin, N. and Broms, B. 1981. History of civil engineering in soft clay. Soft Clay Engineering (Eds E. W. Brand and R. P. Brenner). Elsevier, Amsterdam, pp. 27–156.

    Google Scholar 

  43. Foss, G. N. and Wallerstedt, R. L. 1984. Operational aspects of borehole deployment of a marine seismic system in deep water. Offshore Technology Conference Proceedings, Vol. 2, Paper 4757, pp. 397–406.

    Google Scholar 

  44. Freeman, T. J. and Burdett, J. R. F. In preparation, a. Deep ocean penetrator experiments. Final report to the Commission of the European Communities, Contract 392-83-7 WAS, UK.

    Google Scholar 

  45. Freeman, T. J., Carlyle, S. G., Francis, T. J. G. and Murray, C. N. 1984a. The use of large-scale penetrators for the measurement of deep-ocean sediment properties. Oceanology International, Paper 1.8.

    Google Scholar 

  46. Freeman, T. J., Murray, C. N., Francis, T. J. G., McPhail, S. D. and Schultheiss, P. J. 1984b. Modelling radioactive waste disposal by penetrator experiments in the abyssal Atlantic Ocean. Nature 310(5973), 130–133.

    Article  Google Scholar 

  47. Freeman, T. J., Murray, C. N. and Tal-bert, D. M. In preparation, b. Penetrator experiments in the Nares Abyssal Plain of the Atlantic Ocean.

    Google Scholar 

  48. Fyffe, S., Reis, W. M. and St. John, H. D. 1982. The use of the push-in pressuremeter in offshore site investigation. Oceanology International Exhibition and Conference, Vol. 1, Paper 4.5.

    Google Scholar 

  49. Geise, J. M. and Kolk, H. J. 1983. The use of submersibles for geotechnical investigations. The Design and Operation of Underwater Vehicles, Subtech’ 83. Paper 7.3, Society of Underwater Technology, London.

    Google Scholar 

  50. Geotechnical Consortium, 1984. Geotechnical properties of sediments from Walvis Ridge. Deep Sea Drilling Project, Leg 75, Hole 532A, Initial Report of the Deep Sea Drilling Project, Vol. 75 (Eds W. W. Hay, J.-C. Sibuet et al.). US Government Printing Office, Washington, pp. 1109–1127.

    Google Scholar 

  51. Graaf, H. C. van de and Smits, A. P. 1983. Offshore site investigations by rotary drilling from a diving bell. Ground Engng 16(1), 18–19.

    Google Scholar 

  52. Guney, M., Nawab, Z. and Marhoun, M. A. 1984. Atlantis-II-Deep’s metal reserves and their evaluation. Offshore Technology Conference Proceedings, Vol. 3, Paper 4780, pp. 33–44.

    Google Scholar 

  53. Haas, W. J. M. de, 1983. A seabed sampler for the dredging industry. World Dredging Congress 1983, Paper E3, pp. 237–249.

    Google Scholar 

  54. Hansbo, S. 1957. A new approach to the determination of the shear strength of clay by the fall-cone test. R. Swed. Geotech. Inst. Proc. 14, 1–47.

    Google Scholar 

  55. Henderson, G., Smith, P. D. K. and St. John, H. D. 1980. The development of the push-in pressuremeter for offshore site investigation. Offshore Site Investigation (Ed. D. A. Ardus). Graham & Trotman, London, pp. 159–167.

    Google Scholar 

  56. Hirst, T. J., Perlow Jr., M. and Richards, A. F. 1975. Improved in situ gamma-ray transmission densitometer for marine sediments. Ocean Engng 3(1), 17–27. 56a. Hollister, C. D., Silva, A. J. and Driscoll, A. 1973. A giant piston-corer. Ocean Engng 2, 159-168.

    Article  Google Scholar 

  57. Hughes, J. M. O., Jefferies, M. G. and Morris, D. L. 1984. Self-bored pressuremeter testing in the Arctic offshore. Offshore Technology Conference Proceedings, Vol. 1, Paper 4676, pp. 255–264.

    Google Scholar 

  58. Hulbert, M. H., Bennett, R. H. and Lambert, D. N. 1982. Seabed geotechnical parameters from electrical conductivity measurements. Geo. Mar. Lett. 2, 219–222.

    Article  Google Scholar 

  59. Hunt, R. E. 1984. Geotechnical Engineering Investigation Manual. McGraw-Hill, New York, pp. 103–104.

    Google Scholar 

  60. Inderbitzen, A. L. and Simpson, F. 1972. A study of the strength characteristics of mining sediments utilizing a submersible. Underwater Soil Sampling, Testing, and Construction Control. Special Technical Publication 501, American Society for Testing and Materials, Philadelphia, pp. 204–215.

    Google Scholar 

  61. Ingram, C. 1982. Expendable penetrome-ter for seafloor classification. Geo. Mar. Lett. 2, 239–241.

    Article  Google Scholar 

  62. James, L. T. and Calloway, T. M. 1983. Initial field tests of ISP-1 and ISP-2 — systems that extend the technology of instrumented seabed penetrators. Oceans 83 Proceedings, Vol. 1. Institute of Electrical and Electronics Engineers, and Marine Technology Society, pp. 608–612.

    Article  Google Scholar 

  63. James, L. T., Edrington, T. S., Reis, G. E. and Suazo, J. E. 1981. Development of a gun-launched, instrumented seabed pen-etrometer system. Oceans 81 Conference Record, Vol. 2. Institute of Electrical and Electronics Engineers, and Marine Technology Society, pp. 656–661.

    Google Scholar 

  64. Jefferies, M. G. and Funegard, E. 1983. Cone penetration testing in the Beaufort Sea. Geotechnical Practice in Offshore Engineering (Ed. S. G. Wright). American Society of Civil Engineers, New York, pp. 220–243.

    Google Scholar 

  65. Johns, M. W., Taylor, E. and Bryant, W. R. 1982. Geotechnical sampling and testing of gas-charged marine sediments at in situ pressure. Geo. Mar. Lett. 2, 231–236.

    Article  Google Scholar 

  66. Justice, J. H., Hinds, R. and Stirbys, A. F. 1984. The use of vertical seismic profiling in geotechnical site investigation. Offshore Technology Conference Proceedings, Vol. 2, Paper 4756, pp. 391–396.

    Google Scholar 

  67. Kallstenius, T. 1961. Development of two modern continuous sounding methods. In Fifth International Conference on Soil Mechanics and Foundation Engineering Proceedings, Vol. 1, pp. 475–480.

    Google Scholar 

  68. Keller, G. H. 1982. Organic matter and the geotechnical properties of submarine sediments., Geo. Mar. Lett. 2, 191–198.

    Article  Google Scholar 

  69. Keller, G. H. 1965. Nuclear density probe for in place measurement in deep-sea sediments. Transactions of the Conference and Exhibit, Marine Technology Society and American Society of Limnology and Oceanography, Vol. 1, pp. 363–372.

    Google Scholar 

  70. Kermabon, A. and Cortis, V. 1969. A new Sphincter corer with a recoilless piston. Mar. Geol. 7, 147–159.

    Article  Google Scholar 

  71. Kirkpatrick, W. M. and Khan, A. J. 1984. The reaction of clays to sampling stress relief. Géotechnique 34(1), 29–42.

    Article  Google Scholar 

  72. Kraft, L. M. Jr., Ahmad, N. and Focht, J. A. 1976. Application of remote vane results to offshore geotechnical problems. Offshore Technology Conference Proceedings, Vol. 3, Paper 2626, pp. 75–96.

    Google Scholar 

  73. Kullenberg, B. 1947. The piston core sampler. Svenska Hydrografisk — Biologiska Kommissionens Skrifter, Tredje Serien, Hydrografi, Band 1, Häfte 2.

    Google Scholar 

  74. Kullenberg, B. 1955. Deep-sea coring. Reports of the Swedish Deep-Sea Expedition, 4(2), Fasc. 1, pp. 35–96.

    Google Scholar 

  75. Kulm, L. D., Thornburg, T. M. and Carson, B. 1984. Distribution of lithologies and fluid vents from the Oregon underthrust margin: implications for active subduction of the Juan de Fuca plate. Abstract, EOS Trans Am. Geophys. Union 65(45), 1090.

    Google Scholar 

  76. Kvenvolden, K. A. and Barnard, L. A. 1982. Hydrates of natural gas in continental margins. Studies in Continental Margin Geology (Eds J. S. Watkins and C. L. Drake), AAPG Memoir No. 34, American Association of Petroleum Geologists, Tulsa, pp. 631–640.

    Google Scholar 

  77. Lambert, D. N. 1982. Submersible mounted in situ geotechnical instrumentation. Geo. Mar. Lett 2, 209–214.

    Article  Google Scholar 

  78. Ledoux, J. L., Menard, J. and Soulard, P. 1982. The penetro-gammadensimeter. Penetration Testing, Vol. 2 (Eds A. Ver-ruijt, F. L. Bel ngen and E. H. de Leeuw). A.A. Balkema, Rotterdam, pp. 679–681.

    Google Scholar 

  79. Lee, H. J. In press. State of art: laboratory determination of the strength of marine soils. Strength Testing of Marine Sediments: Laboratory and In-Situ Measurements (Eds R. C. Chaney and K. R. Demars). Special Technical Publication 883, American Society for Testing and Materials, Philadelphia.

    Google Scholar 

  80. Le Tirant, P., Fay, J. B., Brucy, F. and Jezequel, J.-F. 1981. A self-boring pres-suremeter for deep sea soils investigations. Offshore Technology Conference Proceedings, Vol. 2, Paper 4019, pp. 115–126.

    Google Scholar 

  81. Lewis, L., Nacci, V. and Gallagar, J. 1970. In situ investigations of ocean sediments. Civil Engineering in the Oceans II Proceedings. American Society of Civil Engineers, New York, pp. 641–654.

    Google Scholar 

  82. Lunne, T., Lalcasse, S., Aas, G. and Mad-shus, C. In press. Design parameters for offshore sands; use of in situ tests. Paper 17, this volume.

    Google Scholar 

  83. The Marine Geotechnical Consortium. In press. Geotechnical properties of north-west Pacific pelagic clays: Deep Sea Drilling Project Leg 86, Hole 576A. Leg 86 Initial Reports of the Deep Sea Drilling Project, Vol. 86 (Ed. G. R. Heath). US Printing Office, Washington.

    Google Scholar 

  84. Marsland, A. and Windle, D. 1982. Developments in offshore site investigation. Oceanology International Exhibition and Conference, Vol. 1, Paper 2.7. 84a. McCoy, F. W. and Selwyn, S. 1984. The hydrostatic corer. Mar. Geol. 54, 33-41.

    Google Scholar 

  85. Moeyes, G. and Hackley, M. 1983. Soil investigations in the Troll area. Offshore Northern Seas Advanced Project Conference, Stavangar, Paper T6.

    Google Scholar 

  86. Montarges, R., Le Tirant, P., Wannesson, J., Valéry, P. and Bethon, J. L. 1983. Large-size stationary-piston corer. In Deep Offshore Technology 2nd International Conference and Exhibition, pp. 63–74.

    Google Scholar 

  87. Moore, D. G. and Richards, A. F. 1962. Conversion of ‘relative shear strength’ measurements by Arrhenius on east Pacific cores to conventional units of shear strength. Géotechnique 12, 55–59.

    Article  Google Scholar 

  88. NEA, 1984. Seabed Disposal of High-Level Radioactive Waste. Nuclear Energy Organisation for Economic Co-operation and Development, Paris.

    Google Scholar 

  89. Nieuwenhuis, J. K. and Smits, F. P. 1982. The development of a nuclear density probe in a cone penetrometer. Penetration Testing, Vol. 2 (Eds A. Verruijt, F. L. Beringen and E. H. de Leeuw). A.A. Balkema, Rotterdam, pp. 745–749.

    Google Scholar 

  90. Ohya, S., Ogura, K. and Imai, T. 1984. The suspension PS velocity logging system. Offshore Technology Conference Proceedings, Vol. 1, Paper 4680, pp. 291–298.

    Google Scholar 

  91. Okumura, T. and Matsumoto, K. 1981. Marine auto sampler and sample quality. Soil Mechanics and Foundation Engineering Tenth International Conference Proceedings, Stockholm, Vol. 2, pp. 537–540.

    Google Scholar 

  92. Percival, C. M., McVey, D. F., Olson, L. O. and Silva, A. J. 1984. In situ heat transfer experiment (ISHTE). Mar. Geotech. 5(3–4), 361–377.

    Article  Google Scholar 

  93. Pheasant, J. 1984. A microprocessor controlled seabed rockdrill/vibrocorer. Underwater Technol. 10(1), 10–14.

    Google Scholar 

  94. Preslan, W. L. and Babb, L. 1979. Piezometer measurement for deep penetration marine applications. Offshore Technology Conference Proceedings, Vol. 2, Paper 3461, pp. 901–908.

    Google Scholar 

  95. Prindle, R. W. and Lopez, A. A. 1983. Pore pressures in marine sediments — 1981 test of the geotechnically instrumented seafloor probe (GISP). Offshore Technology Conference Proceedings, Vol. 1, Paper 4463, pp. 173–180.

    Google Scholar 

  96. Prior, D. B. and Doyle, E. H. 1984. Geological hazard surveying for exploratory drilling in water depths of 2000 meters. Offshore Technology Conference Proceedings, Vol. 2, Paper 4747, pp. 311–318.

    Google Scholar 

  97. Prothero, W. A., Jr. 1984. Ocean bottom seismometer technology. EOS Transactions, Am. Geophys. Union 65(13), 113–116.

    Article  Google Scholar 

  98. Reece, E. W., Ryerson, D. E., Kestly, J. D. and McNeill, R. L. 1979. The development of in situ marine seismic and geotechnical instrumentation systems. POAC 79]. In Fifth International Conference on Port and Ocean Engineering Under Artic Conditions Proceedings, Vol. 1. The Norwegian Institute of Technology, Trondheim, pp. 331–344.

    Google Scholar 

  99. Reid, W. M., St. John, H. D., Fyffe, S. and Rigden, W. J. 1982. The push-in pres-suremeter. In Symposium on the Pres-suremeter and Its Marine Applications, 37. Editions Technip, Paris, pp. 247–261.

    Google Scholar 

  100. Richards, A. F. 1972. Instrumentation of two submersibles for in situ geotechnical measurements in cohesive sea floor soils. 2nd International Ocean Development Conference Preprints, Vol. 2, pp. 1329–1346.

    Google Scholar 

  101. Richards, A. F. 1982. Review of marine in situ geotechnical testing equipment. Oceanology International Exhibition and Conference Papers, Vol. 1, Paper 2.1, 10 pp.

    Google Scholar 

  102. Richards, A. F. 1984. Modelling and the Consolidation of Marine Soils. In Seabed Mechanics (Ed. B. Denness). Graham & Trotman, London, pp. 3–8.

    Chapter  Google Scholar 

  103. Richards, A. F. and Chaney, R. C. 1981. Present and future geotechnical research needs in deep ocean mining. Mar. Min. 2(4), 315–337.

    Google Scholar 

  104. Richards, A.F. and Hartevelt, J. J. A. 1981. Marine engineering geology; scope and new developments. In 27th International Geological Congress Proceedings, Vol. 17. NVU Press, Utrecht, The Netherlands, pp. 261–275.

    Google Scholar 

  105. Richards, A. F. and Parks, J. M. 1977. Geotechnical predictor equations for east central North Pacific nodule mining area sediments. Offshore Technology Conference Proceedings, Vol. 1, Paper 2773, pp. 377–386.

    Google Scholar 

  106. Richards, A. F. and Zuidberg, H. M. In press, a. State of art: in situ determination of the strength of marine soils. In Strength Testing of Marine Sediments: Laboratory and In Situ Measurements (Eds R. C. Chaney and K. R. Demars). Special Technical Publication 883. American Society for Testing and Materials, Philadelphia.

    Google Scholar 

  107. Richards, A. F. and Zuidberg, H. M. In press, b. Sampling and in situ geotechnical investigations offshore. First Shanghai Symposium on Marine Geotechnology and Nearshore/Offshore Structures (Eds R. C. Chaney and H.-Y. Fang). Special Technical Publication, American Society for Testing and Materials, Philadelphia.

    Google Scholar 

  108. Richards, A. F., McDonald, V. J., Olson, R. E. and Keller, G. H. 1972. In-place measurement of deep-sea soil shear strength. Symposium on Underwater Soil Sampling, Testing and Construction Control. Special Technical Publication No. 501, American Society for Testing and Materials, Philadelphia, pp. 55–68.

    Google Scholar 

  109. Richards, A. F., Øien, K., Keller, G. H. and Lai, J. 1975. Differential piezometer probe for an in situ measurement of sea-floor pore-pressure. Géotechnique 25, 229–238.

    Article  Google Scholar 

  110. Rietsema, R. A. and Viergever, M. A. 1979. In situ measurement of permeability. In Design Parameters in Geotechnical Engineering, Vol. 2. Seventh European Conference on Soil Mechanics and Foundations Engineering. British Geotechnical Society, London, pp. 261–264.

    Google Scholar 

  111. Robertson, P. K., Campanella, R. G. and Gillespie, D. 1985. Seismic CPT to measure in-situ shear wave velocity. Paper presented at the American Society of Civil Engineers, April 1985. Denver.

    Google Scholar 

  112. Rona, P. A. 1984. Hydrothermal mineralization at seafloor spreading centers. Earth-Sci. Rev. 20, 1–104.

    Article  Google Scholar 

  113. Rona, P. A., Bostrom, K., Lucien, L. and Smith, K. L. (Eds) 1984. Hydrothermal Processes at Seafloor Spreading Centers. Plenum Press, New York.

    Google Scholar 

  114. Rose, V. C. and Roney, J. R. 1971. A nuclear guage for in-place measurement of sediment density. Offshore Technology Conference Proceedings, Vol. 1, Paper 1329, pp. 43–52.

    Google Scholar 

  115. Ruiter, J. de 1982. The static cone penetration test state-of-the-art-report. Penetration Testing (Eds A. Verriujt, F. L. Beringen and E. H. de Leeuw). Proceedings Second European Conference on Penetration Testing, Vol. 2. A.A. Balkema, Rotterdam, pp. 389–405.

    Google Scholar 

  116. Schaap, L. H. J. and Hoogendoorn, H. G. 1984. A versatile measuring system for electric cone penetration testing. Field Measurements in Geomechanics, Vol. 1 (Ed. K. Kovari). A.A. Balkema, Rotterdam, pp. 313–324.

    Google Scholar 

  117. Schaap, L. H. J. and Liefting, J. H. 1984. Geotechnical applications of solid state recorders. Field Measurements in Geomechanics, Vol. 1 (Ed. K. Kovari). A.A. Balkema, Rotterdam, pp. 325–333.

    Google Scholar 

  118. Schlosser, F. 1978. Recent advance in in situ testing. Bulletin de Liaison des Laboratories des Ponts et Chaussées, Special Issue VI E, 15–43.

    Google Scholar 

  119. Schultheiss, P. J. 1982. Geotechnical properties of deep sea sediments: a critical review of measurement techniques. Report No. 134, Institute of Oceanographic Sciences, Wormley.

    Google Scholar 

  120. Schultheiss, P. J., McPhail, S. D., Pack-wood, A. R. and Hart, B. In press. An instrument to measure differential pore pressures in deep ocean sediments: Pop-Up-Pore-Pressure Instrument (PUPPI). Report No. DoE/RW, Institute of Oceanographic Sciences, Wormley.

    Google Scholar 

  121. Schüttenhelm, R. T. E., Kuijpers A and Duin, E. J. Th. 1985. The geology of some Atlantic abyssal plains and the engineering implications. Paper 3, this volume.

    Google Scholar 

  122. Shephard, L. E. and Bryant, W. R. 1983. Geotechnical properties of lower trench inner-slope sediments. Tectonophysics 99, 279–312.

    Article  Google Scholar 

  123. Silva, A. 1985. The Comparison of in situ and ship-board vane measurements on a deep-sea clay. Paper 14, this volume.

    Google Scholar 

  124. Silva, A. J., Babb. J. D., Lipkin, J., Piet-ryka, P. and Butler, D. In press. In situ vane system for seafloor strength investigations. IEEE J. Oceanic Engng.

    Google Scholar 

  125. Singh, J. and Chomg, M. K. 1984. Development of a site investigation tool based on quasi static cone penetrometer. Internal Report, University of Leeds, Department of Civil Engineering.

    Google Scholar 

  126. Storms, M. A., Nugent, W. and Cameron, D. H. 1983. Hydraulic piston coring — a new era in ocean research. Offshore Technology Conference Proceedings, Vol. 3, Paper 4622, pp. 369–378.

    Google Scholar 

  127. The Sub-Committee on Soil Sampling, 1981. International Manual for the Sampling of Soft Cohesive Soils. Tokai University Press, Tokyo.

    Google Scholar 

  128. Suess, E. and Massoth, G. 1984. Evidence for venting of pore waters from subducted sediments of the Oregon continental margin. Abstract, EOS Trans., Am. Geophys. Union 65(45), 1089.

    Google Scholar 

  129. Talbert, D. M. 1984a. Report of the Fourth Interim Meeting of the Seabed Working Group Engineering Studies Task Group. Report SAND83-2333, Sandia National Laboratories.

    Google Scholar 

  130. Talbert, D. M. 1984b. Shallow-water free-fall penetrator test (FPT-1). Appendix IV, Report of the Fourth Interim Meeting of the Seabed Working Group Engineering Studies Task Group (Ed. D. M. Talbert). Report SAND83-2333, Sandia National Laboratories, pp. 42–45.

    Google Scholar 

  131. Taylor Smith, D. 1983. Seismo-acoustic wave velocities and sediment engineering properties. In Acoustics and the Sea-Bed (Ed. N. G. Pace). Bath University Press, Bath, pp. 9–17.

    Google Scholar 

  132. Threadgold, P. 1980. Borehole logging for offshore site investigation for engineering purposes. In Offshore Site Investigation (Ed. D. A. Ardus). Graham & Trotman, London, pp. 133–142.

    Google Scholar 

  133. Tjelta, T. I., Tieges, A. W. W., Smits, F. P., Geise, J. M. and Lunne, T. In press. In situ density measurements by nuclear backscatter for an offshore soil investigation. Offshore Technology Conference Proceedings, Paper 4917.

    Google Scholar 

  134. Toolan, F. E. 1983. Recent improvements in soil investigation techniques. In Design In Offshore Structures. Thomas Telford, London, pp. 29–36.

    Google Scholar 

  135. Triangale, P. T. and Mitchell, J. K. 1982. An acoustic cone penetrometer for site investigations. In Penetration Testing, Vol. 2 (Eds A. Verruijt, F. L. Beringen, and E. H. de Leeuw). A.A. Balkema, Rotterdam, pp. 909–194.

    Google Scholar 

  136. True, D. G. 1975. Penetration of projectiles into seafloor soils. Report No. R-822, US Navy Civil Engineering Laboratory.

    Google Scholar 

  137. Tsurusaki, K., Itoh, F. and Yamazaki, T. 1984. Development of in situ measuring apparatus of geotechnical elements of sea floor (IMAGES). Offshore Technology Conference Proceedings, Vol. 1, Paper 4681, pp. 299–307.

    Google Scholar 

  138. Vollset, M. and Gunleiksrud, T. 1982. Offshore geotechnical investigations with the use of in situ measurements. Report No. P-381/1/82, Institutt for Kontinentalsok-kelunders0kelser, Trondheim.

    Google Scholar 

  139. Von Huene, R. 1984. Tectonic process along the front of modern convergent margins — research of the past decade. A. Rev. Earth Planet. Sci. 12, 359–381.

    Article  Google Scholar 

  140. Vyas, Y. K., Angemeer, J., Murff, J. D., Neuberger, C. A. McNeilan, T. and Klej-buk, L. W. 1983. Deepwater geotechnical site investigations: Santa Ynez Unit, offshore California. Offshore Technology Conference Proceedings, Vol. 1, Paper 4467, pp. 217–226.

    Google Scholar 

  141. Whitmarch, R. B. and Lilwall, R. C. 1982. A new method for the determination of in situ shear-wave velocity in deep-sea sediments. Oceanology International Exhibition and Conference Papers, Vol. 1, Paper 4.2, 21 pp.

    Google Scholar 

  142. Wroth, C. P. 1984. The interpretation of in situ soil tests. Géotechnique 34(4), 449–489.

    Article  Google Scholar 

  143. Young, A. G., Quiros, G. W. and Ehlers, C. J. 1983. Effects of offshore sampling and testing on undrained soil shear strength. Offshore Technology Conference Proceedings, Vol. 1, Paper 4465, pp. 193–204.

    Google Scholar 

  144. Zuidberg, H. M. 1975. Seacalf: a submersible cone-penetrometer rig. Mar. Geotech-nol. 1(1), 15–32.

    Article  Google Scholar 

  145. Zuidberg, H. M., Schrier, W. H. and Piet-ers, W. H. 1984. Ambient pressure sampler system for deep ocean soil investigations. Offshore Technology Conference Proceedings, Vol. 1, Paper 4679, pp. 283–290.

    Google Scholar 

  146. Zuidberg, H. M., Richards, A. F. and Tsuzuki, M. In press. Vessel outfit for advanced geotechnical site investigations in deep water. International Symposium on Ocean Space Utilization, Tokyo.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1985 Society for Underwater Technology

About this paper

Cite this paper

Richards, A.F., Zuidberg, H. (1985). In Situ Testing and Sampling Offshore in Water Depths Exceeding 300 m . In: Offshore Site Investigation. Advances in Underwater Technology and Offshore Engineering, vol 3. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-7358-2_10

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-7358-2_10

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-011-7360-5

  • Online ISBN: 978-94-011-7358-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics