Skip to main content

Part of the book series: Pollution Monitoring Series ((PMS))

Abstract

Plant and animal nutritionists, veterinarians, toxicologists and physicians have long been aware of the benefits of certain elements and the hazards of others to the health of plants, livestock and man. This Chapter is concerned with three elements, arsenic, selenium and antimony, which are commonly identified with the toxic or potentially toxic metals, but in view of their chemical and physical properties they are more suitably termed metalloids. Mason (1966) includes these elements in the chalcophile group, for they normally occur in sulphide minerals and form volatile species upon combustion. They are also referred to as atmophile elements by some authors because of their volatility.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abedinzadeh, Z., A. Owlya and H. Rafii (1978). Neutron activation analysis of Iranian rice for various trace elements. Radiochem. Radioanal. Letters. 32: 315–20.

    Google Scholar 

  • Abu-Errish, G. M., E. I. Whitehead and O. E. Olson (1968). Evolution of volatile selenium from soils. Soil Sci. 106: 415–20.

    Article  Google Scholar 

  • Akins, M. B. and R. J. Lewis (1976). Chemical distribution and gaseous evolution of arsenic-74 added to soils as DSMA-74 As. Soil Sci. Soc. Am. J. 40: 655–8.

    Article  Google Scholar 

  • Albert, W. B. (1934). Arsenic solubility in soils. South Carolina Agric. Expt. Sta. Ann. Report. 47: 45–6.

    Google Scholar 

  • Allaway, W. H. (1968). Agronomic controls over the environmental cycling of trace elements. Adv. Agron. 20: 235–74.

    Article  Google Scholar 

  • Allaway, W. H., E. E. Cary and C. F. Ehlig (1967). The cycling of low levels of selenium in soils, plants and animals. In: Selenium in Biomedicine (O. H. Muth, J. E. Oldfield and P. H. Weswig (eds)), A.V.I. Publ. Co., Westport, Connecticut, pp. 273–96.

    Google Scholar 

  • Allaway, W. H., D. P. Moore, J. E. Oldfield and O. H. Muth (1966). Movement of physiological levels of selenium from soils through plants to animals. J. Nutr. 88:411–18.

    Google Scholar 

  • Anastasia, F. B. and W. J. Kender (1973). The influence of soil arsenic on the growth of lowbush blueberry. J. Environ. Qual. 2: 335–7.

    Article  Google Scholar 

  • Andreae, M. O. (1977). Determination of arsenic species in natural waters. Anal. Chem. 49: 820–3.

    Article  Google Scholar 

  • Aronow, L. and F. Kerdel-Vegas (1965). Seleno-cystathionine, a pharmacologically active factor in the seeds of Lecythis ollaria. I. Cytotoxic and depilatory effects of extracts of Lecythis ollaria. Nature, Lond. 205: 1185–6.

    Article  Google Scholar 

  • Asher, C. J. and P. F. Reay (1979). Arsenic uptake by barley seedlings. Aust. J. Plant Physiol. 6: 459–66.

    Article  Google Scholar 

  • Asher, C. J., G. W. Butler and P. J. Peterson (1977). Selenium transport in root systems of tomato. J. Exp. Bot. 28: 279–91.

    Article  Google Scholar 

  • Asher, C. J., C. Evans and C. M. Johnson (1967). Collection and partial characterization of volatile selenium compounds from Medicago sativa L. Aust. J. Biol. Sci. 20: 737–48.

    Google Scholar 

  • Axtmann, R. C. (1975). Environmental impact of a geothermal power plant. Science. 187: 795–803.

    Article  Google Scholar 

  • Baker, R. S., H. F. Arle, J. H. Miller and J. T. Holstun, Jr (1969). Effects of organic arsenical herbicides on cotton response and chemical residues. Weed Sci. 17: 37–40.

    Google Scholar 

  • Barkes, L. and R. W. Fleming (1974). Production of dimethylselenide gas from inorganic selenium by eleven soil fungi. Bull. Environ. Contam. Toxicol. 12: 308–11.

    Article  Google Scholar 

  • Bencko, V. and K. Symon (1977). Health aspects of burning coal with a high arsenic content. Environ. Res. 13: 378–85.

    Article  Google Scholar 

  • Benson, N. R. (1953). Effect of season, phosphate and acidity on plant growth in arsenic toxic soils. Soil Sci. 76: 215–24.

    Article  Google Scholar 

  • Benson, L. M., R. L. Evans and P. J. Peterson (1980). A report of the occurrence of basidiomycetes on arsenic-toxic mine waste. Trans. Brit. Mycol. Soc. 74: 199–201.

    Article  Google Scholar 

  • Benson, L. M., E. K. Porter and P. J. Peterson (1979). Arsenic accumulation, tolerance and genotypic variation in plants on arsenical mine wastes in S.W. England. Int. Symp., Trace Element Stress in Plants, University of California, Los Angeles, Ca.

    Google Scholar 

  • Bertine, K. K. and E. D. Goldberg (1971). Fossil fuel combustion and the major sedimentary cycle. Science. 173: 233–5.

    Article  Google Scholar 

  • Bird, M. L., F. Challenger, P. T. Charlton and J. O. Smith (1948). Studies on the biological methylation. XI. The action of molds on inorganic and organic compounds of arsenic. Biochem. J. 43: 78–83.

    Google Scholar 

  • Bisbjerg, B. (1972). Studies on selenium in plants and soils. Risø Report No. 200, Danish Atomic Energy Commission, Riso.

    Google Scholar 

  • Bohn, H. L. (1976). Arsenic E h-pH diagram and comparisons to the soil chemistry of phosphorus. Soil Sci. 121: 125–7.

    Article  Google Scholar 

  • Bowen, H. J. M. (1966). Trace Elements in Biochemistry. Academic Press, London, 241 pp.

    Google Scholar 

  • Bowen, H. J. M. (1974). Problems in the elementary analysis of standard biological materials. J. Radioanal. Chem. 19: 215–26.

    Article  Google Scholar 

  • Braman, R. S. (1975). Arsenic in the environment. In: Arsenical Pesticides (E. A. Woolson (ed)), American Chemical Society Symposium Vol. 7, American Chemical Society, Washington, pp. 108–23.

    Chapter  Google Scholar 

  • Braman, R. S. and C. C. Foreback (1973). Methylated forms of arsenic in the environment. Science. 182: 1247–9.

    Article  Google Scholar 

  • Brenner, W. (1916). Experiments on the cultivation of a slime bacterium on selenium-containing culture media. Jahrb. Wiss. Bot. 57: 95–127.

    Google Scholar 

  • Brooks, R. R (1972). Geobotany and Biogeochemistry in Mineral Exploration. Harper and Row, New York, 290 pp.

    Google Scholar 

  • Brown, J. M. M. and P. J. de Wet (1962). A preliminary report on the occurrence of selenosis in Africa and its possible role in the aetiology of tribulosis (Geeldikkop), enzootic icterus and some other disease conditions encountered in the karoo areas. Onders. J. Vet. Res. 29: 111–35.

    Google Scholar 

  • Broyer, T. C., C. M. Johnson and R. P. Huston (1912a). Selenium and nutrition of Astragalus. I. Effects of selenite or selenate supply on growth and selenium content. Plant Soil. 36: 635–49.

    Article  Google Scholar 

  • Broyer, T. C., C. M. Johnson and R. P. Huston (1912b). Selenium and nutrition of Astragalus. II. Ionic sorption interactions among selenium, phosphate and the macro-and micronutrient cations. Plant Soil. 36: 651–69.

    Article  Google Scholar 

  • Broyer, T. C., D. C. Lee and C. J. Asher (1966). Selenium nutrition of green plants. Effect of selenite supply on growth and selenium content of alfalfa and subterranean clover. Pl. Physiol. 41: 1425–8.

    Article  Google Scholar 

  • Butler, G. W. and P. J. Peterson (1967). Uptake and metabolism of inorganic forms of Se-75 by Spirodela oligorrhiza. Aust. J. Biol. Sci. 20: 77–86.

    Google Scholar 

  • Byrne, A. R., M. Dermelj and T. Vakselj (1980). Silver accumulation by fungi. Ecosphere (in press).

    Google Scholar 

  • Campbell, J. A., J. C. Laul, K. K. Nielson and R. D. Smith (1978). Separation and chemical characterization of finely-sized fly-ash particles. Anal. Chem. 50: 1032–40.

    Article  Google Scholar 

  • Cannon, H. L. (1957). Description of indicator plants and methods of botanical prospecting for uranium deposits on the Colorado Plateau, US Geol. Surv. Bull. 1030-M, US Govt. Printing Office, Washington.

    Google Scholar 

  • Cannon, H. L. (1971). The use of plant indicators in ground water surveys, geologic mapping, and mineral prospecting. Taxon. 20: 227–56.

    Article  Google Scholar 

  • Cannon, H. L., H. T. Shacklette and H. Bastron (1968). Metal absorption by Equisetum (horsetails), US Geol. Surv. Bull. 1278-A, US Government Printing Office, Washington.

    Google Scholar 

  • Carrow, R. N., P. E. Rieke and B. G. Ellis (1975). Growth of turfgrasses as affected by soil phosphorus and arsenic. Soil Sci. Soc. Am. Proc. 39: 1121–4.

    Article  Google Scholar 

  • Carter, D. L., M. J. Brown, W. H. Allaway and E. E. Cary (1968). Selenium content of forage and hay crops in the Pacific Northwest. Agron. J. 60: 532–4.

    Article  Google Scholar 

  • Carter, D. L., G. W. Robbins and M. J. Brown (1972). Effect of phosphorus fertilization on thé selenium concentration in alfalfa (Medicago sativa). Soil Sci. Soc. Am. Proc. 36: 624–8.

    Article  Google Scholar 

  • Cary, E. E. and W. H. Allaway (1973). Selenium content of field crops grown on selenite-treated soils. Agron. J. 65: 922–5.

    Article  Google Scholar 

  • Cary, E. E., G. A. Wieczarek and W. H. Allaway (1967). Reactions of seleniteselenium added soils that produce low-selenium forages. Soil Sci. Soc. Am. Proc. 31: 21–6.

    Article  Google Scholar 

  • Chaney, R. L. and P. M. Giordano (1977). Micro-elements as related to plant deficiencies. In: Soils for Management of Organic Wastes and Waste Waters (L. F. Elliott and F.J. Stevenson (eds)), Soil Sci. Soc. America, Wisconsin, pp. 234–77.

    Google Scholar 

  • Chang, S. C. and M. L. Jackson (1957). Fractionation of soil phosphorus. Soil Sci. 84: 133–41.

    Article  Google Scholar 

  • Chappell, W. R. (1979). Heavy metal pollution from shale oil production. In: Int. Conf. Management and Control of Heavy Metals in the Environment (R. Perry (chairman)), C.E.P. Consultants, Edinburgh, pp. 592–5.

    Google Scholar 

  • Chattopadhyay, A. and R. E. Jervis (1974). Multi-element determination in marketgarden soils by instrumental photon activation analysis. Anal. Chem. 46: 1630–9.

    Article  Google Scholar 

  • Chen, D. M., S. N. Nigam and W. B. McConnell (1970). Biosynthesis of Semethylselenocysteine + S-methylcysteine in Astragalus bisulcatus. Can. J. Biochem. 48: 1278–83.

    Article  Google Scholar 

  • Cheng, C. N. and D. D. Focht (1979). Production of arsine and methylarsines in soil and in culture. Appl. Environ. Microbiol. 38: 494–8.

    Google Scholar 

  • Chisholm, D. (1972). Lead, arsenic and copper content of crops grown on lead arsenate-treated and untreated soils. Can. J. Plant Sci. 52: 583–8.

    Article  Google Scholar 

  • Chow, C. M., S. N. Nigam and W. B. McConnell (1972). Biosynthesis of Semethylselenocysteine and S-methylcysteine in Astragalus bisulcatus; origin of the selenomethyl and the thiomethyl groups. Biochem. Biophys. Acta. 273: 91–6.

    Article  Google Scholar 

  • Clements, H. F. and J. Munson (1947). Arsenic toxicity studies in soil and culture solution. Pacific Sci. 1: 151–71.

    Google Scholar 

  • Colbourn, P., B. J. Alloway and I. Thornton (1975). Arsenic and heavy metals in soils associated with regional geochemical anomalies in south-west England. Sei. Tot. Environ. 4: 359–63.

    Article  Google Scholar 

  • Coles, D. G., R. C. Ragaini, J. M. Ondov, G. L. Fisher, D. Silberman and B. A. Prentice (1979). Chemical studies of stack fly ash from a coal-fired power plant. Environ. Sci. Technol. 13: 455–9.

    Article  Google Scholar 

  • Collier, G. F. and D. J. Greenwood (1977a). Potential phytotoxic components of pulverized fuel ash. J. Sci. Fd. Agric. 28: 137–44.

    Article  Google Scholar 

  • Collier, G. F. and D. J. Greenwood (1977b). The influence of solution concentration of aluminium, arsenic, boron and copper on root growth in relation to the phytotoxicity of pulverized fuel ash. J. Sci. Fd. Agric. 28: 145–51.

    Article  Google Scholar 

  • Cooper, H. P., W. R. Pagen, E. E. Hall, W. B. Albert, W. B. Rogers and J. A. Riley (1932). Soils differ markedly in their response to additions of calcium arsenate, South Carolina Agr. Exp. Sta. 45th Ann. Rep., pp. 23-7.

    Google Scholar 

  • Cousins, F. B. and I. M. Cairney (1961). Some aspects of selenium metabolism in sheep. Aust. J. Agric. Res. 12: 927–43.

    Article  Google Scholar 

  • Cox, D. P. and M. Alexander (1974). Factors affecting trimethylarsine and dimethylselenide formation by Candida humicola. Microbial Ecology. 1: 136–44.

    Article  Google Scholar 

  • Crafts, A. S. and R. S. Rosenfels (1939). Toxicity studies with arsenic in eighty Californian soils. Hilgardia. 12: 177–200.

    Google Scholar 

  • Crecelius, E. A., C. J. Johnson and G. C. Hofer (1974). Contamination of soils near a copper smelter by arsenic, antimony and lead. Water Air Soil Pollut. 3: 337–42.

    Google Scholar 

  • Davies, E. B. and J. H. Watkinson (1966a). Uptake of native and applied selenium by pasture species. I. Uptake of selenium by browntop, ryegrass, cocksfoot and white clover from Atiamuri sand. N. Z. J. Agric. Res. 9: 317–27.

    Article  Google Scholar 

  • Davies, E. B. and J. H. Watkinson (1966b). Uptake of native and applied selenium by pasture species. II. Effects of sulfate and of soil type on uptake by clover. N. Z. J. Agric. Res. 9: 641–51.

    Article  Google Scholar 

  • De Jong, D., R. A. Morse, W. H. Gutenmann and D. J. Lisk (1977). Selenium in pollen gathered by bees foraging on fly ash-grown plants. Bull. Environ. Contam. Toxicol. 18: 442–4.

    Article  Google Scholar 

  • Dean, L. A. and E. J. Rubins (1947). Anion exchange in soils: I. Exchangeable phosphorus and the anion exchange capacity. Soil Sci. 63: 377–87.

    Article  Google Scholar 

  • Deuel, L. E. and A.R. Swoboda (1972a). Arsenic toxicity to cotton and soybeans. J. Environ. Qual. 1: 317–20.

    Article  Google Scholar 

  • Deuel, L. E. and A. R. Swoboda (1972b). Arsenic solubility in a reduced environment. Soil. Sci. Soc. Am. Proc. 36: 276–8.

    Article  Google Scholar 

  • Dickens, R. and A. E. Hiltbold (1967). Movement and persistence of methanearsonates in soil. Weeds. 15: 299–304.

    Article  Google Scholar 

  • Dilworth, G. L. and R. S. Bandurski (1977). Activation of selenate by adenosine-5′-triphosphate sulphurylase from Saccharomvces cerevisiae. Biochem. J. 163: 521–9.

    Google Scholar 

  • Dixon, M. and E. C. Webb (1958). Enzymes. Academic Press, New York, 950 pp.

    Google Scholar 

  • Doran, J. W. and M. Alexander (1977a). Microbial formation of volatile selenium compound in soil. Soil Sci. Soc. Am. J. 41: 70–3.

    Article  Google Scholar 

  • Doran, J. W. and M. Alexander (1977b). Microbial transformations of selenium. Appl. Environ. Microbiol. 33: 31–7.

    Google Scholar 

  • Downes, C. P., C. A. McAuliffe and M. R. C. Winter (1979). Selenium biochemistry. Inorg. Perspect. Biol. Med. 2: 241–70.

    Google Scholar 

  • Doyle, P. J. and W. K. Fletcher (1977). Influence of soil parent material on the selenium content of wheat from west-central Saskatchewan. Can. J. Plant. Sci. 57: 859–64.

    Article  Google Scholar 

  • Duble, R. L., E. C. Holt and G. G. McBee (1968). The translocation of two organic arsenicals in purple nutsedge. Weed Sci. 16: 421–4.

    Google Scholar 

  • Duck, N. W. and G. W. Himus (1952). On arsenic in coal and its mode of occurrence. Euel. 30: 267–71.

    Google Scholar 

  • Egan, A. and N. M. Spyrou (1977). Determination of heavy metals in sewage-based fertilizer using short-lived isotopes. J. Radioanal. Client. 37: 775–84.

    Article  Google Scholar 

  • Ehman, P. J. (1966). Residues in cotton seed from weed control with methanearsonates. Proc. South. Weed Conf. 19: 540–1.

    Google Scholar 

  • Ellis, R. J. (1969). Sulphate activation in higher plants. Planta. 88(1): 34–42.

    Article  Google Scholar 

  • Enoch, H. G. and R. L. Lester (1975). The purification and properties of formate dehydrogenase and nitrate reductase from Escherichia coli. J. Biol. Chem. 250: 6693–705.

    Google Scholar 

  • Epstein, E. (1955). Passive permeation and active transport of ions in plant roots. Plant Physiol. 30: 529–35.

    Article  Google Scholar 

  • Erdman, J. A. and H. A. Tourtelot (1976). Denver liquid sewage sludge: Its agricultural benefits and its effect on the metal composition of wheat grown at the Watkins test site, Adams County, Colorado, US Geol. Surv. open-file report No. 76-810, US Government Printing Office, Washington.

    Google Scholar 

  • Everett, C. S. (1962). Effect of phosphorus on the phytotoxicity of tricalcium arsenate as manifested by bluegrass and crabgrass. Cited by Woolson et al. (1973).

    Google Scholar 

  • Falcone, G. and W. J. Dickenson (1960). Metabolism of selenite and mechanisms of inhibitory action of selenite on yeasts. Giorn Microbiol. 8: 129–50.

    Google Scholar 

  • Falcone, G. and W. J. Dickenson (1963). Reduction of selenite by intact yeast cells and cell-free preparations. J. Bacteriol. 85: 754–62.

    Google Scholar 

  • Fergus, I. F. (1955). A note on arsenic toxicity in some Queensland Soils. Queensl. J. Agric. Sci. 12: 95–100.

    Google Scholar 

  • Ferguson, J. F. and J. Gavis (1972). A review of the arsenic cycle in natural waters. Water Res. 6: 1259–74.

    Article  Google Scholar 

  • Ferrari, G. and F. Renosto (1972). Regulation of sulfate uptake by excised barley roots in the presence of selenate. Plant Physiol. 49: 114–16.

    Article  Google Scholar 

  • Fleming, G. A. (1962). Some factors affecting the uptake of selenium by plants. Irish J. Agric. Res. 1: 131–8.

    Google Scholar 

  • Fleming, R. W. and M. Alexander (1972). Dimethylselenide and dimethyltelluride formation by a strain of Penicillium. Appl. Microbiol. 24: 424–9.

    Google Scholar 

  • Fletcher, K., P. Doyle and V. C. Brink (1973). Seleniferous vegetation and soils in the Eastern Yukon. Can. J. Plant Sci. 53: 701–3.

    Article  Google Scholar 

  • Fowler, B. A. (1977). Toxicology of environmental arsenic. In: Toxicology of Trace Elements (R. A. Goyer and M. A. Mahlman (eds)), Halsted, London, pp. 79–122.

    Google Scholar 

  • Francis, A. J., J. M. Duxbury and M. Alexander (1974). Evolution of dimethylselenide from soils. Appl. Microbiol. 28: 248–50.

    Google Scholar 

  • Frost, D. V. (1967). Arsenicals in biology — retrospect and prospect. Fed. Proc. 26: 194–208.

    Google Scholar 

  • Furr, A. K., W. C. Kelly, C. A. Bache, W. H. Gutenmann and D. J. Lisk (1976a). Multi-element uptake by vegetables and millet grown in pots on fly ashamended soil. J. Agric. Fd. Chem. 24: 885–8.

    Article  Google Scholar 

  • Furr, A. K., A. W. Lawrence, S. S. C. Tong, M. C. Grandolfo, R. A. Hofstader, C. A. Bache, W. H. Gutenmann and D. J. Lisk (1976b). Multi-element and chlorinated hydrocarbon analysis of municipal sewage sludges of American cities. Environ. Sci. Technol. 10: 683–7.

    Article  Google Scholar 

  • Furr, A. K., G. S. Stoewsand, C. A. Bache, W. H. Gutenmann and D. J. Lisk (1975). Multi-element residues in tissues of guinea pigs fed sweet clover grown on fly ash. Arch. Environ. Hlth. 30: 244–8.

    Google Scholar 

  • Gardiner, M. R. (1969). Selenium in animal nutrition. Outlook Agric. 6: 19–28.

    Google Scholar 

  • Gardiner, M. R. and R. C. Gorman (1963). Further observations on plant selenium levels in western Australia. Aust. J. Exp. Agric. Anim. Husb. 3: 284–9.

    Article  Google Scholar 

  • Geering, H. R., E. E. Cary, L. H. P. Jones and W. H. Allaway (1968). Solubility and redox criteria for the possible forms of selenium in soils. Soil Sci. Soc. Am. Proc. 32: 35–40.

    Article  Google Scholar 

  • Girling, C. A., P. J. Peterson and H. V. Warren (1979). Plants as indicators of gold mineralization at Watson Bar, British Columbia, Canada. Econ. Geol. 74: 902–7.

    Article  Google Scholar 

  • Gissel-Nielsen, G. (1971a). Selenium content of some fertilizers and their influence on uptake of selenium in plants. J. Agric. Ed. Chem. 19: 564–6.

    Article  Google Scholar 

  • Gissel-Nielsen, G. (1971b). Influence of pH and texture of the soil on plant uptake of added selenium. J. Agric. Ed. Chem. 19: 1165–7.

    Article  Google Scholar 

  • Gissel-Nielsen, G. (1973). Uptake and distribution of added selenite and selenate by barley and red clover as influenced by sulphur. J. Sci. Ed. Agric. 24: 649–55.

    Article  Google Scholar 

  • Gissel-Nielsen, G. (1974). Effect of fertilizers on uptake of selenium into plants. Proc. 7th Int. Coll. Plant Analysis and Fertilizer Problems, Hanover, West Germany, pp. 111–16.

    Google Scholar 

  • Gissel-Nielsen, G. (1975). Foliar application and pre-sowing treatment of cereals with selenite. Z. Pflanzenernaehr. Bodenk. 1: 97–105.

    Article  Google Scholar 

  • Gissel-Nielsen, G. (1976). Selenium in soils and plants. Proc. Symp. Selenium-Tellurium in the Environment, 1976, Indiana, USA, pp. 10-25.

    Google Scholar 

  • Gissel-Nielsen, G. (1977). Control of selenium in plants. Risø National Laboratory Report, 370.

    Google Scholar 

  • Gissel-Nielsen, G. (1979). Uptake and translocation of selenium-75 in Zea mays. In: Isotopes and Radiation in Research on Soil-Plant Relationships, 1978, International Atomic Energy Agency, Vienna, pp. 427–36.

    Google Scholar 

  • Goldschmidt, V. M. (1954). Geochemistry. Oxford University Press, Oxford, 730 pp.

    Google Scholar 

  • Goodwin, K. O. (1968). Abnormalities in the electrocardiograms of young sheep and lambs grazing natural pastures low in selenium. Nature, Lond. 217: 1275–6.

    Article  Google Scholar 

  • Gough, L. P. and H. T. Shacklette (1976). Toxicity of selected elements to plants, animals and man — an outline, US Geol. Survey open-file report No. 76-746, US Government Printing Office, Washington.

    Google Scholar 

  • Grant, A. B. (1965). Pasture top-dressing with selenium. N.Z. J. Agric. Res. 8: 681–90.

    Article  Google Scholar 

  • Grant, C. and A. J. Dobbs (1977). The growth and metal content of plants grown in soil contaminated by a copper/chrome/arsenic wood preservative. Environ. Pollut. 14: 213–26.

    Article  Google Scholar 

  • Gregers-Hansen, B. (1967). Application of radioactivation analysis for the determination of selenium and cobalt in soils and plants. Trans 8th Int. Congr. Soil Sci., Bucharest, Vol.3, pp.63–70.

    Google Scholar 

  • Grimmett, R. E. R. (1939). Arsenical soils of the Waitapu Valley: Evidence of poisoning of stock at Reporoa. N. Z. J. Agric. 58: 383–91.

    Google Scholar 

  • Grimmett, R. E. R. and I. G. Macintosh (1939). Occurrence of arsenic in soils and waters in the Waitapu Valley and its relation to stock health. N. Z. J. Sci. Techn. A. Agric. Sect. 21: 137A–45A.

    Google Scholar 

  • Gutenmann, W. H. and D. J. Lisk (1979). Absorption of selenium from coal fly ashamended soil by Astragalus racemosus. Bull. Environ. Contam. Toxicol. 23: 104–6.

    Article  Google Scholar 

  • Gutenmann, W. H., C. A. Bache, W. D. Youngs and D. J. Lisk (1976). Selenium in fly ash. Science. 191: 966–7.

    Article  Google Scholar 

  • Haan, S. (1978). Yield and mineral composition of grass grown on soils treated with sewage sludge, 7th Gen. Meeting Eur. Grass L. Federation, Gent, pp.9.33–9.40.

    Google Scholar 

  • Hamdy, A. A. and G. Gissel-Nielsen (1976). Relationships between soil factors and selenium content of Danish soils and plants, Risø National Laboratory Report No. 349, Riso, Denmark.

    Google Scholar 

  • Hamdy, A. A. and Gissel-Nielsen, G. (1977). Fixation of selenium by clay minerals and iron oxides. Z. Pflanzenernaehr. Bodenk. 140: 63–70.

    Article  Google Scholar 

  • Hashimoto, Y. and J. W. Winchester (1967). Selenium in the atmosphere. Environ. Sci. Technol. 1: 338–40.

    Article  Google Scholar 

  • Hashimoto, Y., J. Y. Hwang and S. Yanagisawa (1970). Possible source of atmosphere pollution of selenium. Environ. Sci. Technol. 4: 157–8.

    Article  Google Scholar 

  • Hattula, T. and M. Johanson (1978). Determination of some of the trace elements in bark by neutron activation analysis and high resolution spectroscopy. Radiochem. Radioanal. Letters. 32: 35–44.

    Google Scholar 

  • Hawkes, H. E. and J. S. Webb (1962). Geochemistry in Mineral Exploration. Harper and Row, New York, 415 pp.

    Google Scholar 

  • Hess, R. E. and R. W. Blanchar (1977). Arsenic determination and arsenic, lead and copper content of Missouri soils, Research Bull. No. 1020, College of Agriculture, University of Missouri, Columbia.

    Google Scholar 

  • Hill, J. R. C. and W. F. Nothard (1973). The Rhodesian approach to the vegetating of slimes dams. J. S. Afr. Inst. Min. Metall. 73: 197–208.

    Google Scholar 

  • Hiltbold, A. E. (1975). Behaviour of organoarsenicals in plants and soils. In: Arsenical Pesticides (E.A. Woolson (ed)), American Chemical Society Symposium, Vol. 7, American Chemical Society, Washington, pp. 53–69.

    Chapter  Google Scholar 

  • Hiltbold, A. E., B. F. Hajek and G. A. Buchanan (1974). Distribution of arsenic in soil profiles after repeated applications of MSMA. Weed Sci. 22: 272–5.

    Google Scholar 

  • Howard, J. H. (1977). Geochemistry of selenium: Formation of ferroselite and selenium behaviour in the vicinity of oxidizing sulfide and uranium deposits. Géochim. Cosmochim. Acta. 41: 1665–79.

    Article  Google Scholar 

  • Hurd-Karrer, A. M. (1938). Relation of sulphate to selenium absorption by plants. Am. J. Bot. 25: 666–75.

    Article  Google Scholar 

  • Hurd-Karrer, A. M. (1939). Antagonism of certain elements essential to plants toward chemically related toxic elements. Plant Physiol. 14: 9–29.

    Article  Google Scholar 

  • Hutchinson, T. C. and A. Kuja (1979). Selection and the use of multiple-metal tolerant native grasses for re-vegetation of mine tailings. In: Int. Conf. Management and Control of Heavy Metals in the Environment (R. Perry (chairman)), C.E.P. Consultants, Edinburgh, pp. 191–7.

    Google Scholar 

  • Jacobs, L. W. and D. R. Keeney (1970). Arsenic-phosphorus interactions on corn. Commun. Soil Sci. Plant Anal. 1: 85–94.

    Article  Google Scholar 

  • Jacobs, L. W., D. R. Keeney and L. M. Walsh (1970a). Arsenic residue toxicity to vegetable crops grown on plainfield sand. Agron. J. 62: 588–91.

    Article  Google Scholar 

  • Jacobs, L. W., J. K. Syers and D. R. Keeney (1970b). Arsenic Sorption by soils. Soil Sci. Soc. Am. Proc. 34: 750–4.

    Article  Google Scholar 

  • Jenkins, K. J. and M. Hidiroglou (1967). The incorporation of 75Se-selenite into dystrophogenic pasture grass. The chemical nature of the seleno-compounds formed and their availability to young ovines. Can. J. Biochem. 45: 1027–40.

    Article  Google Scholar 

  • Jervis, R. E. and B. Tiefenbach (1979). Arsenic accumulation in gold smelter workers and nearby residents. In: Nuclear Activation Techniques in the Life Sciences, 1978, International Atomic Energy Agency, Vienna, pp. 627–42.

    Google Scholar 

  • Johnson, H. (1970). Determination of selenium in solid waste. Environ. Sci. Technol. 4: 850–3.

    Article  Google Scholar 

  • Johnson, L. R. and A. E. Hiltbold (1969). Arsenic content of soil and crops following use of methanearsonate herbicides. Soil Sci. Soc. Am. Proc. 33: 279–82.

    Article  Google Scholar 

  • Jones, J. S. and M. B. Hatch (1937). The significance of inorganic spray residue accumulation in orchard soils. Soil Sci. 44: 37–63.

    Article  Google Scholar 

  • Kardos, L. T., S. C. Vandecaveye and N. Benson (1941). Causes and remedies of the unproductiveness of certain soils following the removal of mature (fruit) trees, Agric. Exp. Sta. Bull. No. 410, Washington.

    Google Scholar 

  • Klein, H., A. W. Andren and N. E. Bolton (1975). Trace element discharges from coal combustion for power production. Water Air Soil Pollut. 5: 71–7.

    Article  Google Scholar 

  • Koljonen, T. (1974). Selenium uptake by plants in Finland. Oikos 25: 353–5.

    Article  Google Scholar 

  • Koljonen, T. (1977). Selenium as an indicator element in geochemical exploration. Bull. Geol. Soc. Finland. 49: 85–8.

    Google Scholar 

  • Kubota, J., W. H. Allaway, D. C. Carter, E. E. Cary and V.A. Lazar (1967). Selenium in crops in the United States in relation to selenium-responsive diseases in minerals. J. Agric. Fd. Chem. 15: 448–53.

    Article  Google Scholar 

  • LÃ¥g, J. and E. Steinnes (1978). Regional distribution of selenium and arsenic in humus layers of Norwegian Forest soils. Geoderma. 20: 3–14.

    Article  Google Scholar 

  • Lancaster, R. J., M. R. Coup and J. W. Hughes (1971). Toxicity of arsenic present in Lakeweed. N. Z. Vet. J. 19: 141–5.

    Google Scholar 

  • Leggett, J. E. and E. Epstein (1956). Kinetics of sulfate absorption by barley roots. Plant Physiol. 31: 222–6.

    Article  Google Scholar 

  • Levander, O. A. (1977). Arsenic. National Academy of Sciences, Washington, 332 pp.

    Google Scholar 

  • Lévesque, M. (1974). Some aspects of selenium relationships in Eastern Canada soils and plants. Can. J. Soil Sci. 54: 205–14.

    Article  Google Scholar 

  • Levine, V. E. (1925). The reducing properties of microorganisms with special reference to selenium compounds. J. Bacteriol. 10: 217–64.

    Google Scholar 

  • Liebig, G. F., Jr (1966). Arsenic. Chapter II in: Diagnostic Criteria for Plants and Soils (H. D. Chapman (ed)), Univ. Calif. Div. Agric. Sci., Berkeley, pp. 13–23.

    Google Scholar 

  • Lim, M. Y. (1979). Trace elements from coal combustion — atmospheric emissions, Report No. ICTIS/TROS, International Energy Agency, Coal Research, London.

    Google Scholar 

  • Lindberg, P. and S. Bingefors (1970). Selenium levels of forages and soils in different regions of the world. Acta. Agric. Scand. 20: 133–6.

    Article  Google Scholar 

  • Lipman, J. G. and S.A. Waksman (1923). The oxidation of selenium by a new group of autotrophic microorganisms. Science. LVII: 60.

    Article  Google Scholar 

  • Lockard, R. G. and A. R. McWalter (1956). Effects of toxic levels of sodium, arsenic, iron and aluminium on the rice plant. Malay. Agric. J. 39: 256–67.

    Google Scholar 

  • McColloch, R. J., J. H. Hamilton and S. K. Brown (1963). An apparent seleniferous leaf wax from Stanleya pinnata. Biochem. Biophys. Res. Commun. 11: 7–13.

    Article  Google Scholar 

  • McCray, C. W. R. and I. S. Hurwood (1963). Selenium in north western Queensland associated with a Marn cretaceous formation. Queensl. J. Agric. Sci. 20: 475–98.

    Google Scholar 

  • Mackenzie, F. T., R. J. Lantzy and V. Paterson (1979). Global trace metal cycles and predictions. J. Intern. Assoc. Math. Geol. 11: 99–142.

    Article  Google Scholar 

  • MacPhee, A. W., D. Chisholm and C. R. MacEachern (1960). The persistence of certain pesticides in the soil and their effect on crop yields. Can. J. Soil Sci. 40: 59–62.

    Article  Google Scholar 

  • Martin, J. L. and M. L. Gerlach (1969). Separate elution by ion-exchange chromatography of some biologically important seleno-amino acids. Anal. Biochem. 29: 257–64.

    Article  Google Scholar 

  • Martin, J. L., A. Shrift and M. L. Gerlach (1971). Use of 75Se-selenite for the study of selenium metabolism in Astragalus. Phytochem. 10: 945–52.

    Article  Google Scholar 

  • Mason, B. (1966). Principles of Geochemistry, 3rd edition, John Wiley, New York, 329 pp.

    Google Scholar 

  • Miller, J. T. and H. G. Byers (1937). Selenium in plants in relation to its occurrence in soils. J. Agric. Res. 55: 59–68.

    Google Scholar 

  • Misra, S. G. and N. Tripathi (1972). Note on selenium status of surface soils. Indian J. Agric. Sci. 42: 182–3.

    Google Scholar 

  • Mitchell, R. L. and J. C. Burridge (1979). Trace elements in soils and crops. Phil. Trans. R. Soc. Lond. B. 288: 15–24.

    Article  Google Scholar 

  • Moxon, A. L., O. E. Olson and W. V. Searight (1950). Selenium in rocks, soils and plants, Tech. Bull. No. 2, South Dakota Agric. Exp. Sta., South Dakota.

    Google Scholar 

  • Muth, O. H. (1967). Symposium: Selenium in Biomedicine, A.V.I. Publ. Co., Westport, Connecticut, 445 pp.

    Google Scholar 

  • Nadkarni, R. A. and G. H. Morrison (1973). Multi-element instrumental neutron activation analysis of biological materials. Anal. Chem. 45: 1957–60.

    Article  Google Scholar 

  • Naidenov, M. and A. Travesi (1977). Non-destructive neutron activation analysis of Bulgarian soils. Soil Sci. 124: 152–60.

    Article  Google Scholar 

  • Nakahara, H., M. Yanokura and Y. Murakami (1977). Activation analysis of plants within regions of geothermo resource development. J. Radioanal. Chem. 37: 839–47.

    Article  Google Scholar 

  • Neiswander, C. R. (1951). Duration of the effectiveness of lead arsenate to turf for white grub control. J. Econ. Entomol. 44: 221–4.

    Google Scholar 

  • Ng, B. H. and J. W. Anderson (1978). Synthesis of selenocysteine by cysteine synthase from selenium accumulator and non-accumulator plants. Phytochem. 17: 2069–74.

    Article  Google Scholar 

  • Ng, B. H. and J. W. Anderson (1979). Light-dependent incorporation of selenite and sulphite into selenocysteine and cysteine by isolated pea chloroplasts. Phytochem. 18: 573–80.

    Article  Google Scholar 

  • Nigam, S. N. and W. B. McConnell (1972). Isolation and identification of l-cystathionine and L-Selenocystathionine from the foliage of Astragalus pectinatus. Phytochem. 11: 377–80.

    Article  Google Scholar 

  • Nye, S. M. and P. J. Peterson (1975). The content and distribution of selenium in soils and plants from seleniferous areas in Eire and England. Trace Subst. Environ. Hlth. 9: 113–21.

    Google Scholar 

  • Oldfield, J. E. (1971). Selenium in Nutrition, National Academy of Sciences, Washington, 79 pp.

    Google Scholar 

  • Oldfield, J. E. (1972). Selenium deficiency in soils and its effect on animal health. In: Geochemical Environment in Relation to Health and Disease (H. L. Cannon and H.C. Hopps (eds)), Geol. Soc. Amer. Bull., pp. 57-63.

    Google Scholar 

  • Olson, O. E., E. J. Novacek, E. I. Whitehead and I. S. Palmer (1970). Investigations on selenium in wheat. Phytoehem. 9: 1181–8.

    Article  Google Scholar 

  • Olson, O. E., L. Sisson and A. L. Moxon (1940). Absorption of selenium and arsenic by plants from soils under natural conditions. Soil Sci. 50: 115–18.

    Article  Google Scholar 

  • Onishi, H. (1970). Antimony. In: Handbook of Geochemistry, Vol. 2/4, Section 51 (K.H. Wedepohl (ed)), Springer-Verlag, Heidelberg.

    Google Scholar 

  • O’Toole, J. J., R. G. Clark, K. L. Malaby and D. L. Tranger (1971). Environmental trace element survey at a heavy metals refining site, ANS Meeting, University of Missouri, Columbia.

    Google Scholar 

  • Peirson, D. H. and P. A. Cawse (1979). Trace elements in the atmosphere. Phil. Trans. R. Soc. Lond. B. 288: 41–9.

    Article  Google Scholar 

  • Peterson, P. J. (1979). Geochemistry and ecology. Phil. Trans. R. Soc. Lond. B. 288: 169–77.

    Article  Google Scholar 

  • Peterson, J. and G. W. Butler (1962). The uptake and assimilation of selenite by higher plants. Aust. J. Biol. Sci. 15: 126–46.

    Google Scholar 

  • Peterson, P. J. and G. W. Butler (1966). Colloidal selenium availability to three pasture species in pot culture. Nature, Lond. 212: 961–2.

    Article  Google Scholar 

  • Peterson, P. J. and G. W. Butler (1967). Significance of selenocystathionine in an Australian selenium-accumulating plant, Neptunia amplexicaulis. Nature, Lond. 213: 599–600.

    Article  Google Scholar 

  • Peterson, P. J. and G. W. Butler (1971). The occurrence of selenocystathionine in Morinda reticulata Benth., a toxic seleniferous plant. Aust. J. Biol. Sci. 24: 175–7.

    Google Scholar 

  • Peterson, P. J. and P. J. Robinson (1972). L-cystathionine and its selenium analogue in Neptunia amplexicaulis. Phytoehem. 11: 1837–9.

    Article  Google Scholar 

  • Peterson, P. J., L. M. Benson and E. K. Porter (1979a). Biogeochemistry of arsenic on polluted sites in S.W. England. In: Int. Conf. Management and Control of Heavy Metals in the Environment (R. Perry (chairman)), C.E.P. Consultants, Edinburgh, pp. 198–201.

    Google Scholar 

  • Peterson, P. J., C. A. Girling, D. W. Klumpp and M. J. Minski (1979). An appraisal of neutron activation analysis and other analytical techniques for the determination of arsenic, selenium and tin in environmental samples. In: Nuclear Activation Techniques in the Life Sciences, 1978, International Atomic Energy Agency, Vienna, pp. 103–14.

    Google Scholar 

  • Pinsent, J. (1954). The need for selenite and molybdate in the formation of formic dehydrogenase by members of the coli-aerogenes group of bacteria. Biochem. J. 57: 10–16.

    Google Scholar 

  • Porter, E. K. and P. J. Peterson (1975). Arsenic accumulation by plants on mine waste (United Kingdom). Sci. Tot. Environ. 4: 365–71.

    Article  Google Scholar 

  • Porter, E. K. and P. J. Peterson (1977a). Arsenic tolerance in grasses growing in mine waste. Environ. Pollut. 14: 255–67.

    Article  Google Scholar 

  • Porter, E. K. and P. J. Peterson (1977b). Biogeochemistry of arsenic on polluted sites in S.W. England. Trace Subst. Environ. Hlth. 11: 89–99.

    Google Scholar 

  • Pyatt, F. B. (1973). Sporophores of Laccaria laccata on metal spoil. Trans. Brit. Mycol. Soc. 61: 189–90.

    Article  Google Scholar 

  • Pyatt, F. B. (1975). Ciavaria argillacea on a spoil tip in S.W. England. Trans. Brit. Mycol. Soc. 64: 171.

    Article  Google Scholar 

  • Ragaini, R. C., H. R. Ralston and N. Roberts (1977). Environmental trace metal contamination in Kellogg, Idaho, near a lead smelting complex. Environ. Sci. Technol. 11:773–81.

    Article  Google Scholar 

  • Ravikovitch, S. and M. Margolin (1957). Selenium in soils and plants. Rehovot. Agric. Res. Sta. Ser. 145E, 7: 41–52.

    Google Scholar 

  • Reay, P. F. (1972). The accumulation of arsenic from arsenic-rich natural waters by aquatic plants. J. Appl. Ecol. 9: 557–65.

    Article  Google Scholar 

  • Reed, J. F. and M. B. Sturgis (1936). Toxicity from arsenic compounds to rice on flooded soils. J. Am. Soc. Agron. 28: 432–6.

    Article  Google Scholar 

  • Renan, M. J., B. D. Drennan, R. J. Keddy and J. P. F. Sellschop (1979). Oesophageal cancer in the Transkei: Determination of trace-element concentrations in selected plant material of instrumental neutron activation analysis. In: Nuclear Activation Techniques in the Life Sciences, 1978, International Atomic Energy Agency, Vienna, pp. 479–95.

    Google Scholar 

  • Robbins, C. W. and D. L. Carter (1970). Selenium concentrations in phosphorus fertilizer materials and associated uptake by plants. Soil Sci. Soc. Am. Proc. 34: 506–9.

    Article  Google Scholar 

  • Robinson, E. L. (1975). Arsenic in soil with five annual applications of MSMA. Weed Sci. 23: 341–3.

    Google Scholar 

  • Rocovich, S. E. and D. A. West (1975). Arsenic tolerance in a population of the grass Andropogon scoparius Michx. Science. 188: 263–4.

    Article  Google Scholar 

  • Rosehart, R. G. and J. Y. Lee (1973). The effect of arsenic on the growth of white spruce seedlings. Water Air Soil Pollut. 2: 439–43.

    Article  Google Scholar 

  • Rosenfeld, I. (1962). Localization of Se-75 in Astragalus bisulcatus leaf fractions. Biochemical and chemical studies on Astragalus leaves and roots, Univ. Wyoming Agric. Exper. Sta. Bull. No. 385, pp. 25–30.

    Google Scholar 

  • Rosenfeld, I. and O. A. Beath (1964). Selenium: Geobotany, Biochemistry, Toxicity and Nutrition. Academic Press, New York, 411 pp.

    Google Scholar 

  • Rosenfeld, I. and H. F. Eppson (1962). Translocation of radioactive selenium in Astragalus bisculcatus. Biochemical and chemical studies on Astragalus leaves and roots, Univ. Wyoming Agric. Exp. Sta. Bull. No. 385, pp. 21–25.

    Google Scholar 

  • Rumberg, C. B., R. E. Engel and W. F. Meggitt (1960). Effect of phosphorus concentration on the absorption of arsenate by oats from nutrient solution. Agron. J. 52: 452–3.

    Article  Google Scholar 

  • Sabadell, J. E. and R. C. Axtmann (1975). Heavy metal contamination from geothermal sources. Environ. Health Perspect. 12: 1–8.

    Article  Google Scholar 

  • Sachs, R. M. and J. L. Michael (1971). Comparative phytotoxicity among four arsenical herbicides. Weed Sci. 19: 558–64.

    Google Scholar 

  • Sandberg, G. R. and I. K. Allen (1975). A proposed arsenic cycle in an agronomic ecosystem. In: Arsenical Pesticides (E. A. Woolson (ed)), American Chemical Society Symposium Vol.7, American Chemical Society, Washington, pp. 124–47.

    Chapter  Google Scholar 

  • Sapozhnikov, D. I. (1937). The exchange of sulfur by selenium during the photoreduction of H2CO3 hy purple sulfur bacteria. Mikrobiologia. 6: 643–4.

    Google Scholar 

  • Schroeder, A. and J. J. Balassa (1966). Abnormal trace metals in man: Arsenic. J. Chron. Dis. 19: 85–95.

    Article  Google Scholar 

  • Schweizer, E. E. (1967). Toxicity of DSMA soil residues on cotton and rotational crops. Weeds. 15: 72–6.

    Article  Google Scholar 

  • Schwertmann, U. (1964). Differentiation of iron oxide in soils by a photochemical extraction with acid ammonium oxalate. Pflanz, kheng. Bodenk. 105: 194–201.

    Article  Google Scholar 

  • Sckerl, M. M. and R. E. Frans (1969). Translocation and metabolism of MAA-14C in Johnson grass and cotton. Weed Sci. 17: 421–7.

    Google Scholar 

  • Selyankina, K. P. and L. S. Alekseeva (1970). Selenium and tellurium in the atmosphere in the vicinity of copper electrolytic refining plants (in Russia). Gig. Sanit. 35: 95–6.

    Google Scholar 

  • Shacklette, H. T. (1965). Bryophytes associated with mineral deposits and solutions in Alaska, US Geol. Surv. Bull. 1198-C, US Govt. Printing Office, Washington.

    Google Scholar 

  • Shacklette, H. T., J. G. Boerngen and J. R. Keith (1974). Selenium, fluorine and arsenic in surficial materials of the conterminous United States, US Geol. Surv. Circ. 692, US Govt. Printing Office, Washington.

    Google Scholar 

  • Sharman, G. A. M. (1960). Selenium in animal health. Proc. Nutr. Soc. 19: 169–76.

    Article  Google Scholar 

  • Shaw, W. H. and J. W. Anderson (1974). Comparative enzymology of the adenosine triphosphate sulphurylases from leaf tissue of selenium-accumulator and nonaccumulator plants. Biochem. J. 139: 37–42.

    Google Scholar 

  • Shrift, A. (1973). Metabolism of selenium by plants and micro-organisms. In: Organic Selenium Compounds: Their Chemistry and Biology (D. L. Klayman and W. H. H. Gunter (eds)), John Wiley and Sons, New York, 763-814pp.

    Google Scholar 

  • Shrift, A. and J. M. Ulrich (1969). Transport of selenate and selenite into Astragalus roots. Plant Physiol. 44: 893–6.

    Article  Google Scholar 

  • Shrift, A. and T. K. Virupaksha (1963). Biosynthesis of Se-methylselenocysteine from selenite in selenium-accumulating plants. Biochim. Biophys. Acta. 71: 483–5.

    Article  Google Scholar 

  • Shrift, A. and T. K. Virupaksha (1965). Seleno-amino acids in seleniumaccumulating plants. Biochim. Biphys. Acta. 100: 65–75.

    Article  Google Scholar 

  • Shrift, A., D. Bechard, C. Harcup and L. Fowden (1976). Utilization of selenocysteine by a cysteinyl-tRNA synthetase from Phaseolus aureus. Plant Physiol. 58: 248–52.

    Article  Google Scholar 

  • Small, H. G., Jr and C. B. McCants (1961). Determination of arsenic in flue-cured tobacco and in soils. Soil Sci. Soc. Am. Proc. 25: 346–8.

    Article  Google Scholar 

  • Small, H. G., Jr and C. B. McCants (1962). Influence of arsenic applied to the growth media on the arsenic content of flue-cured tobacco. Agron. J. 54: 129–33.

    Article  Google Scholar 

  • Spare, C. G. and A. I. Virtanen (1964). On the occurrence of free seleniumcontaining amino acids in onion (Allium cepa). Acta. Chem. Scand. 18: 280–2.

    Article  Google Scholar 

  • Speer, L. (1973). The effect of arsenate and other inhibitors on early events during germination. Pl. Physiol. 52: 142–6.

    Article  Google Scholar 

  • Steevans, D. R., L. M. Walsh and D. R. Keeney (1972). Arsenic phytotoxicity on a Plainfield sand as affected by ferric sulfate or aluminium sulfate. J. Environ. Qual. 1: 301–3.

    Article  Google Scholar 

  • Stewart, J. and E. S. Smith (1922). Some relations of arsenic to plant growth: II. Soil Sci. 14: 119–26.

    Article  Google Scholar 

  • Stewart, J. M., S. N. Nigam, M. V. S. Raju and W. B. McConnell (1978). Effect of sodium selenate, selenomethylselenocysteine, and methylcysteine on organogenesis in detached leaves of Echeveria elegans. Can. J. Bot. 56: 343–7.

    Article  Google Scholar 

  • Stijve, T. and R. Besson (1976). Mercury, cadmium, lead and selenium content of mushroom species belonging to the genus Agaricus. Chemosphere. 2: 151–8.

    Article  Google Scholar 

  • Swaine, D. J. (1955). The trace element content of soils, Commonw. Bur. Soil Sci., Rothamsted Exp. Sta. Tech. Commun. No. 48.

    Google Scholar 

  • Swaine, D. J. (1975). Trace elements in coals. In: Recent Contributions to Geochemistry and Analytical Chemistry (A. I. Tugerinov (ed)), Keter Publishing House, Jerusalem, pp. 539–50.

    Google Scholar 

  • Swaine, J.(1977). Trace elements in coal. Trace Subst. Environ. HIth. 11:107–16.

    Google Scholar 

  • Swaine, D. J. (1978). Selenium: From Magma to man. Trace Subst. Environ. Hlth. 12: 129–34.

    Google Scholar 

  • Tammes, P. M. and M. M. De Lint (1969). Leaching of arsenic from soil. Neth. J. Agric. Sci. 17: 128–32.

    Google Scholar 

  • Temple, P. J., S. N. Linzon and B. L. Chai (1977). Contamination of vegetation and soil by arsenic emissions from secondary lead smelters. Environ. Pollut. 12: 311–20.

    Article  Google Scholar 

  • Thoresby, P. and I. Thornton (1979). Heavy metals and arsenic in soil, pasture herbage and barley in some mineralised areas in Britain: Significance to animal and human health. Trace Subst. Environ. Hlth. 13.

    Google Scholar 

  • Thornton, I., P. Abrahams and H. Matthews (1979). Some examples of the environmental significance of heavy metal anomalies disclosed by the Wolfson geochemical atlas of England and Wales. In: Int. Conf. Management and Control of Heavy Metals in the Environment (R. Perry (chairman)), C.E.P. Consultants, Edinburgh, pp. 218–21.

    Google Scholar 

  • Trelease, S. F. and O. A. Beath (1949). Selenium; its Geological Occurrence and its Biological Effects in Relation to Botany, Chemistry, Agriculture, Nutrition, and Medicine (published by the authors), New York, 292 pp.

    Google Scholar 

  • Trelease, S. F. and H. M. Trelease (1938). Selenium as a stimulating and possibly essential element for indicator plants. Am. J. Bot. 25: 372–80.

    Article  Google Scholar 

  • Trelease, S. F., A. A. DiSomma and A. L. Jacobs (1960). Seleno-amino acid found in Astragalus bisulcatus. Science. 132: 618.

    Article  Google Scholar 

  • Turner, D. C. and T. C. Stadtman (1973). Purification of protein components of the clostridial glycine reductase system and characterisation of protein A as a selenoprotein. Arch. Biochem. Biophys. 154: 366–81.

    Article  Google Scholar 

  • Tweedie, J. W. and I. H. Segal (1970). Specificity of transport processes for sulfur, selenium and molybdenum anions by filamentous fungi. Biochim. Biophys. Acta. 196: 95–106.

    Article  Google Scholar 

  • Ulrich, J. M. and A. Shrift (1968). Selenium absorption by excised Astragalus roots. Plant Physiol. 43: 14–20.

    Article  Google Scholar 

  • Valente, I. M. C. B. S. (1978). Aspects of the environmental chemistry of antimony. Ph.D. Thesis, University of Reading, UK.

    Google Scholar 

  • Vandecaveye, S. C., G. M. Horner and C.M. Keaton (1936). Unproductiveness of certain orchard soils as related to lead arsenate spray accumulation. Soil Sci. 42: 203–15.

    Article  Google Scholar 

  • Vinogradov, A. P. (1959). The Geochemistry of Rare and Dispersed Chemical Elements in Soils, 2nd edition, Consultants Bureau, New York, 209 pp.

    Google Scholar 

  • Virupaksha, T. K. and A. Shrift (1965). Biochemical differences between selenium accumulator and non-accumulator Astragalus species. Biochim. Biophys. Acta. 107: 69–80.

    Article  Google Scholar 

  • Virupaksha, T. K., A. Shrift and H. Tarver (1966). Metabolism of selenomethionine in selenium accumulator and non-accumulator Astragalus species. Biochim. Biophys. Acta. 130: 45–55.

    Article  Google Scholar 

  • Von Endt, D. W., P. C. Kearney and D. D. Kaufman (1968). Dégradation of monosodium methanearsonic acid by soil microorganisms. J. Agric. Fd. Chem. 16: 17–20.

    Article  Google Scholar 

  • Walker, D. R. (1971). Selenium in forage species in Central Alberta. Can. J. Soil. Sci. 51: 506–8.

    Article  Google Scholar 

  • Walsh, L. M. and D. R. Keeney (1975). Behaviour and phytotoxicity of inorganic arsenicals in soil. In: Arsenical Pesticides (E. A. Woolson (ed)), American Chemical Society Symposium Vol. 7, American Chemical Society, Washington, pp. 35–52.

    Chapter  Google Scholar 

  • Walsh, T., G. A. Fleming, R. O’Connor and A. Sweeney (1951). Selenium toxicity associated with an Irish soil series. Nature, Lond. 168: 881–2.

    Article  Google Scholar 

  • Warren, H. V., R. E. Delavault and J. Barakso (1964). The role of arsenic as a pathfinder in biogeochemical prospecting. Econ. Geol. 59: 1381–6.

    Article  Google Scholar 

  • Watkinson, J. H. (1962). Soil selenium and animal health. Trans. Common. IV and V Int. Soc. Soil Sci., Palmerston North, pp. 149-54.

    Google Scholar 

  • Watkinson, J. H. (1964). A selenium-accumulating plant of the humid regions: Amanita muscaria. Nature, Lond. 202: 1239–40.

    Article  Google Scholar 

  • Watkinson, J. H. and E. B. Davies (1967). Uptake of native and applied selenium by pasture species. IV. Relative uptake through foliage and roots by white clover and browntop. Distribution of selenium in white clover. N. Z. J. Agric. Res. 10: 122–33.

    Article  Google Scholar 

  • Wauchope, R. D. (1975). Fixation of arsenical herbicides, phosphate and arsenate in alluvial soils. J. Environ. Qual. 4: 355–8.

    Article  Google Scholar 

  • Webb, J. S., I. Thornton and K. Fletcher (1966). Seleniferous soils in parts of England and Wales. Nature, Lond. 211: 327.

    Article  Google Scholar 

  • Weiss, H. V., M. Koide and E. D. Goldberg (1971). Selenium and sulfur in a Greenland ice sheet: Relation to fossil fuel combustion. Science. 172: 261–3.

    Article  Google Scholar 

  • Wells, N. (1967a). Selenium content of soil-forming rocks. N. Z. J. Geol. Geophys. 10: 198–208.

    Article  Google Scholar 

  • Wells, N. (1967b). Selenium in horizons of soil profiles. N. Z. J. Sci. 10: 142–79.

    Google Scholar 

  • Wild, H. (1974a). Geobotanical anomalies in Rhodesia. 4. The vegetation of arsenical soils. Kirkia. 9: 243–64.

    Google Scholar 

  • Wild, H. (1974b). Arsenic tolerant plant species established on arsenical mine dumps in Rhodesia. Kirkia. 9: 265–78.

    Google Scholar 

  • Wild, H. and G. H. Wiltshire (1971a). The problem of vegetating Rhodesian mine dumps examined. Rhod. Chamber of Mines J. 13: 26–30.

    Google Scholar 

  • Wild, H. and G. H. Wiltshire (1971b). The problem of vegetating Rhodesian mine dumps examined. 2. Suggestions for future research and practical trials. Rhod. Chamber of Mines J. 13: 35–7.

    Google Scholar 

  • Williams, C. and I. Thornton (1972). The effect of soil additives on the uptake of molybdenum and selenium from soils from different environments. Plant Soil. 36: 395–406.

    Article  Google Scholar 

  • Williams, J. D. H., J. K. Syers and T. W. Walker (1967). Fractionation of soil inorganic phosphate by a modification of Chang and Jackson’s procedure. Soil Sci. Soc. Am. Proc. 31: 736–9.

    Article  Google Scholar 

  • Wilson, L. G. and R. S. Bandurski (1958). Enzymatic reactions involving sulfate, sulfite, selenate and molybdate. J. Biol. Chem. 233: 975–81.

    Google Scholar 

  • Wiseman, B. F. H. and G. M. Bedri (1975). A neutron activation scheme for the detection and determination of pollutant heavy metals in sewage-based fertiliser. J. Radioanal. Chem. 24: 313–20.

    Article  Google Scholar 

  • Woo, Y. K. (1965). Behaviour of sodium arsenite in some West Malaysian soils. Asian-Pacific Weed Sci. Soc. 20: 248–56.

    Google Scholar 

  • Wood, J. M. (1974). Biological cycles for toxic elements in the environment. Science. 183: 1049–52.

    Article  Google Scholar 

  • Woolson, E. A. (1972). Effects of fertiliser materials and combinations on the phytotoxicity, availability and content of arsenic in corn. J. Sci. Fd. Agric. 23: 1477–81.

    Article  Google Scholar 

  • Woolson, E. A. (1973). Arsenic phytotoxicity and uptake in six vegetable crops. Weed Sci. 21: 524–7.

    Google Scholar 

  • Woolson, E. A. (ed) (1975). Arsenical Pesticides, American Chemical Society Symposium Vol. 7, American Chemical Society, Washington.

    Google Scholar 

  • Woolson, E. A. (1977). Generation of alkylarsines from soil. Weed Sci. 25:412–16.

    Google Scholar 

  • Woolson, E. A. and P. C. Kearney (1973). Persistence and reactions of 14C-cacodylic acid in soils. Environ. Sci. Technol. 7: 47–50.

    Article  Google Scholar 

  • Woolson, E. A., J. H. Axley and P. C. Kearney (1971a). The chemistry and phytotoxicity of arsenic in soils. I. Contaminated field soils. Soil Sci. Soc. Am. Proc. 35: 938–43.

    Article  Google Scholar 

  • Woolson, E. A., J. H. Axley and P. C. Kearney (1971b). Correlation between available soil arsenic, estimated by six methods and response to corn (Zea mays L.) Soil Sci. Soc. Am. Proc. 35: 101–5.

    Article  Google Scholar 

  • Woolson, E. A., J. H. Axley and P. C. Kearney (1973). The chemistry and phytotoxicity of arsenic in soils. II. Effects of time and phosphorus. Soil Sci. Soc. Am. Proc. 37: 254–9.

    Article  Google Scholar 

  • Yamamoto, L. A. and I. H. Segal (1966). The inorganic sulfate transport system of Penicillium chrysogenum. Arch. biochem. Biophys. 114: 523–38.

    Article  Google Scholar 

  • Zeiber, N. K. and A. Shrift (1971). Response to selenium by callus cultures derived from Astragalus species. Plant Physiol. 47: 545–50.

    Article  Google Scholar 

  • Zingaro, R. A., J. E. Price and C.R. Benedict (1977). Incorporation of selenium into carbohydrates of Astragalus racemosus. J. Carbohydrates Nucleosides Nucleotides. 4: 271–80.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1981 Applied Science Publishers Ltd

About this chapter

Cite this chapter

Peterson, P.J., Benson, L.M., Zieve, R. (1981). Metalloids. In: Lepp, N.W. (eds) Effect of Heavy Metal Pollution on Plants. Pollution Monitoring Series. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-7339-1_8

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-7339-1_8

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-011-7341-4

  • Online ISBN: 978-94-011-7339-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics