Skip to main content

Part of the book series: Pollution Monitoring Series ((PMS))

Abstract

Though nickel was identified as an element as early as 1751 by Cronstedt, its occurrence in plants was not recognized for a further hundred years, when Forchhammer (1855) found nickel in oak wood. More routine examination of plant material for the presence of nickel did not occur until Tschugaeff (1905) developed the dimethyl glyoxime method for determining trace quantities. Kraut (1906) found nickel in peat and brown coal ashes, while Cornec (1919) found it in marine algae. Later, McHargue (1925) analysed a wide range of plant, animal and soil samples for nickel, copper, manganese and cobalt and concluded that all were widely present in these materials and may therefore function as essential elements. A brief review of these early studies on nickel is given in Vanselow (1966).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Allan, R. J. (1971). Lake sediment: a medium for regional geochemical exploration of the Canadian Shield. Bull. Can. Inst. Min. Metall. (CIM), 64(715): 43–59.

    Google Scholar 

  • Allen, W. R. and Sheppard, P. M. (1971). Copper tolerance in some Californian populations of the monkey flower Mimulusguttatus. Proc. Royal Soc. London. B., 177: 177–96.

    Google Scholar 

  • Anderson, A. and K. O. Nilsson (1972). Enrichment of trace elements from sewage sludge fertilizer in soils and plants. Ambio. 1: 176–9.

    Google Scholar 

  • Anderson, A. J., D. R. Meyer and F. K. Mayer (1973). Heavy metal toxicities: levels of nickel, cobalt, and chromium in the soil and plants associated with visual symptoms and variation in growth of an oat crop. Aust. J. Agric. Res. 24: 557–71.

    Google Scholar 

  • Anderson, A. J., D. R. Meyer and F. K. Mayer (1979). Effects of the environment on the symptom pattern of nickel toxicity in the oat plant. Ann. Botany London). 43: 271–84.

    Google Scholar 

  • Antonovics, J., A. D. Bradshaw and R. G. Turner (1971). Heavy metal tolerances in plants. Adv. Ecol. Res. 7: 1–85.

    Google Scholar 

  • Bartha, R. and E. J. Ordal (1965). Nickel-dependent chemolithotrophic growth of two Hydrogenomonas strains. J. Bacteriol. 89: 1015.

    Google Scholar 

  • Bates, T. E., A. Haq, Y. K. Soon and J. R. Meyer (1975). Uptake of metals from sewage sludge amended soils. In: Proc. Internat. Conf. on Heavy Metals in the Environment, Vol. 2. Pathways and Cycling (T. C. Hutchinson (ed.)), Institute for Environmental Studies, University of Toronto, pp. 403-17.

    Google Scholar 

  • Bertrand, D. (1974). Microbiologie du sol. Le nickel, oligo-element dynamique pour les micro-organisms fixateurs de l’azote de l’air. C.R. Acad. Sci. Paris, Ser.D. 278: 2231.

    Google Scholar 

  • Bhuiya, M. R. H. and A. H. Cornfield (1972). Effects of addition of 1000 ppm Cu, Ni, Pb, and Zn on CO2 release during incubation of soil alone and after treatment with straw. Environ. Pollut. 3: 173–7.

    Google Scholar 

  • Birrell, K. S. and A. C. S. Wright (1965). A serpentine soil in New Caledonia. N.Z.J. Sci. Technol. 21A: 72–6.

    Google Scholar 

  • Blauel, R. A. and D. Hocking (1974). Air pollution and forest decline near a nickel smelter. Information Report NOR-X-115, Northern Forest Research Centre, Canadian Forestry Service, Edmonton.

    Google Scholar 

  • Bowen, H. J. M. (1966). Trace Elements in Biochemistry. Academic Press, London and New York. 241 pp.

    Google Scholar 

  • Brenchley, W. E. (1938). Comparative effects of cobalt, nickel and copper on plant growth. Ann. Appl. Biol. 25: 671–94.

    Google Scholar 

  • Brooks, R. R. and H. M. Crooks (1980). Studies on uptake of heavy metals, by the Scandinavian ‘Kisplanten’ Lychnis alpina and Silene dioica. Plant Soil. 54: 491–6.

    Google Scholar 

  • Brooks, R., J. Lee and T. Jaffre (1976). Some New Zealand and New Caledonian plant accumulators of nickel. J. Ecol. 62: 493–9.

    Google Scholar 

  • Carter, A. (1978). Some aspects of the fungal flora in nickel-contaminated soils near Sudbury, Ontario, Canada. M.Sc. Thesis, University of Toronto.

    Google Scholar 

  • Cornec, E. (1919). Etude spectrographique des cendres de plantes marines. Compt. Rend. Acad. Sci., Paris. 168:513–14.

    Google Scholar 

  • Cornfield, A. H. (1977). Effects of addition of 12 metals on CO2 release during incubation of an acid sandy loam. Geoderma. 19: 199–203.

    Google Scholar 

  • Costescu, L. M. and T. C. Hutchinson (1972). The ecological consequences of soil pollution by metallic dust from the Sudbury smelter. In: Proceedings: Environmental Progress in Science and Education, May 1–4, 1972, Institute of Environmental Sciences, New York, pp. 540–5.

    Google Scholar 

  • Cotton, M. (1930). Toxic effects of iodine and nickel on buckwheat grown in solution cultures. Bull. Torrev. Bot. Club. 57: 127–40.

    Google Scholar 

  • Cowgill, U. M. (1974). The hydrogeochemistry of Linsley Pond II. The chemical composition of the aquatic macrophytes. Arch. Hydrobiol. Suppl. 45: 1–119.

    Google Scholar 

  • Cox, R. M. and T. C. Hutchinson (1979). Metal co-tolerance in the grass Deschampsia cespitosa. Nature. 279: 231–3.

    Google Scholar 

  • Cox, R. M. and T. C. Hutchinson (1980). Multiple metal tolerances in the grass Deschampsia cespitosa (L.) Beauv. from the Sudbury smelting area. New Phytol. 84: 631–47.

    Google Scholar 

  • Crooke, W. M. (1956). Effect of soil reaction on uptake of nickel from a serpentine soil. Soil Sci. 81: 269–76.

    Google Scholar 

  • Crooke, W. M. and R. H. E. Inkson (1955). The relationship between nickel toxicity and major nutrient supply. Plant Soil. 6: 1–15.

    Google Scholar 

  • de Sequeira, E. M. (1969). Toxicity and movement of heavy metals in serpentine soils (north-eastern Portugal). Agron. Lusitanica. 30: 115–54.

    Google Scholar 

  • Dixon, N. E., C. Gazzola, R. L. Blakeley and B. Zarer (1975). Jack bean urease (E.C.3.5.1.5.). A metalloenzyme. A simple biological role for nickel? J. Am. Chem. Soc. 97: 4131–3.

    Google Scholar 

  • Ernst, W. (1972). Ecophysiological studies on heavy metal plants in South Central Africa. Kirkia. 8: 125–45.

    Google Scholar 

  • Fezy, J. S., D. F. Spencer and R. W. Greene (1979). The effect of nickel on the growth of the freshwater diatom Navicula pelliculosa. Environ. Pollut. 10: 131–7.

    Google Scholar 

  • Forchhammer, J. G. (1855). Uber den Einfluss des Kochsalzes auf die Bildung der Mineralien. Poggendorffs Ann. Phys. u. Chem. 95: 60–96.

    Google Scholar 

  • Foy, C. D., R. L. Chaney and M. C. White (1978). The physiology of metal toxicity in plants. Ann. Rev. Plant Physiol. 29: 511–66.

    Google Scholar 

  • Freedman, B. (1978). Effects of smelter pollution near Sudbury, Ontario, Canada on surrounding forested ecosystems. Ph.D. Thesis, University of Toronto.

    Google Scholar 

  • Freedman, B. and T. C. Hutchinson (1980a). Pollutant inputs from the atmosphere and accumulations in soils and vegetation near a nickel-copper smelter at Sudbury, Ontario, Canada. Can. J. Bot. 58: 108–32.

    Google Scholar 

  • Freedman, B. and T. C. Hutchinson (1980b). Effects of smelter pollutants on forest litter decomposition near a nickel-copper smelter at Sudbury, Ontario, Canada. Can. J. Bot. 58: 1722–36.

    Google Scholar 

  • Frieden, E. (1972). The chemical elements of life. Sci. Am. 227:10–17.

    Google Scholar 

  • Gambi, O. V. (1967). Preliminary data on the histological localization of nickel in Alyssum bertolonii. Nuovo G. Bot. Ital. 101: 59–60.

    Google Scholar 

  • Goodman, E. T. and T. M. Roberts (1971). Plants and soils as indicators of metals in air. Nature. 231:287–92.

    Google Scholar 

  • Gottfryd, A. (1977). Nickel accumulation in soil, vegetation and earthworms at Port Colbourne, Ontario. Report, Dept. of Botany, University of Toronto.

    Google Scholar 

  • Gregory, R. P. G. and A. D. Bradshaw (1965). Heavy metal tolerance in populations of Agrostis tenuis sibth. and other grasses. New Phvtol. 64: 131–43.

    Google Scholar 

  • Groet, S. S. (1976). Regional and local variations in heavy metal concentrations of bryophytes in the northeastern United States. Oikos. 27: 445–56.

    Google Scholar 

  • Halstead, R. L. (1968). Effect of different amendments on yield and composition of oats grown on a soil derived from serpentine material. Can. J. Soil Sci. 48: 301–5.

    Google Scholar 

  • Halstead, R. L., B. J. Finn and A. J. MacLean (1969). Extractability of nickel added to soils and its concentration in plants. Can. J. Soil Sci. 49: 335–42.

    Google Scholar 

  • Haq, A. V., T. E. Bates and Y. K. Soon (1980). Comparison of extractants for plant-available Zn, Cd, Ni and Cu in contaminated soils. Soil Sci. Soc. Amer. J. 44: 772–7.

    Google Scholar 

  • Haselhoff, E. (1893). Versuche uber die schadlicke Wirkung von nickel-haltigem Wasser auf pflanzen. Landw. Jahrb. 22: 1862–8.

    Google Scholar 

  • Hogan, G. D. and W. E. Rauser (1979). Tolerance and toxicity of cobalt, copper, nickel and zinc in clones of Agrostis gigantea. New Phytol., 83: 665–70.

    Google Scholar 

  • Hogan, G. D., G. M. Courtin and W. E. Rauser (1977). Copper tolerance in clones of Agrostis gigantea from a mine waste site. Can. J. Bot. 55: 1053–61.

    Google Scholar 

  • Hunter, J. G. (1954). Nickel toxicity in a Southern Rhodesian soil. S. Afri. J. Sci., 51: 133–5.

    Google Scholar 

  • Hunter, J. G. and O. Vergnano (1952). Nickel toxicity in plants. Ann. App. Biol. 39: 279–84.

    Google Scholar 

  • Hutchinson, T. C. (1973). Comparative studies of the toxicity of heavy metals to phytoplankton and their synergistic interactions. Water Pollut. Res. Canada. 8: 68–90.

    Google Scholar 

  • Hutchinson, T. C. (1978). Interim report on nickel toxicity of Sudbury area soils. The International Nickel Company, Canada Ltd.

    Google Scholar 

  • Hutchinson, T. C. and H. Czyrska (1975). Heavy metal toxicity and synergism to floating aquatic weeds. Verh. Internat. Verein. Limnol. 19: 2102–11.

    Google Scholar 

  • Hutchinson, T. C. and P. M. Stokes (1975). Heavy-metal toxicity and algal bioassays. In: Special Tech. Publ. No. 573, Amer. Soc. Testing and Materials, Water Quality Parameters, pp. 320-43.

    Google Scholar 

  • Hutchinson, T. C. and A. Kuja (1979). Selection and use of multiple-metal tolerant native grasses for re-vegetation of mine tailings. In: Internat. Conf. on Management and Control of Heavy Metals in the Environment (R. Perry (ed.)), C.E.P. Consultants Ltd, Edinburgh, pp. 191–7.

    Google Scholar 

  • Hutchinson, T. C. and D. Tarn (1981). Extreme metal and acidity tolerance in the alga Chlorella saccharophila isolated from polluted Sudbury soils. Can. J. Bot. 59. (in press).

    Google Scholar 

  • Hutchinson, T. C. and L. M. Whitby (1974). Heavy-metal pollution in the Sudbury mining and smelting region of Canada. I. Soil and vegetation contamination by nickel, copper and other metals. Environ. Cons. 1: 123–32.

    Google Scholar 

  • Hutchinson, T. C. and L. M. Whitby (1977). The effect of acid rainfall and heavy metal particulates on a boreal forest ecosystem near the Sudbury smelting region of Canada. Water, Air Soil Pollut. 7: 421–38.

    Google Scholar 

  • Hutchinson, T. C. and E. Wright (1981). Nickel and copper tolerances in Phragmites commimis. Can. J. Bot. 59. (in press).

    Google Scholar 

  • Hutchinson, C. M. Czuba and L. M. Cunningham (1974). Lead. cadmium, zinc, copper and nickel distributions in vegetable and soils of an intensely cultivated area and levels of copper, lead and zinc in the grasses. In: Trace Elements in Environmental Health Symp. 8(D. D. Hemphill (ed.)). University of Missouri, Columbia, pp.81–93.

    Google Scholar 

  • Hutchinson, T. C., A. Federenko. J. Fitchko, A. Kuja. J. van Loon and J. Lichwa (1975). Movement and compartmentation of nickel and copper in an aquatic ecosystem. In: Trace Substances in Environmental Health IX (D.D. Hemphill (ed.)). University of Missouri, Columbia, pp. 89–105.

    Google Scholar 

  • Hutchinson. T. C., W. Gizyn, M. Havas and V. Zobens (1978). 2. N.W.T. In: Trace Substances in Environmental Health — XII (D. D. Hemphill (ed.)). University of Missouri, Columbia, pp. 317–32.

    Google Scholar 

  • Jaffre. T., R. R. Brooks, J. Lee and R. O. Reeves (1976). Schertia acuminata: a hyperaccumulator of nickel from New Caledonia. Science. 193:578–80.

    Google Scholar 

  • Johnson, I. and L. Rasmussen (1977). Retrospective study (1944-1976) of heavy metals in the epiphyte Pterogonium gracile collected from one porophyte. Bryologist. 80: 6259.

    Google Scholar 

  • Jowett, D. (1958). Populations of Agrostis sp. tolerant to heavy metals. Nature. 182:816–17.

    Google Scholar 

  • Juma, N. G. and M. A. Tabatabai (1977). Effects of trace elements on phosphatase activity in soils. Soil Sci. Soc. Amer. J. 41: 343–6.

    Google Scholar 

  • Keeney, D. R. (1975). Trace elements in agriculture. Internal Report, Dept. of Soil Science, University of Wisconsin. Madison.

    Google Scholar 

  • Keeney, D. R. and L. M. Walsh (1975). Heavy metal availability in sewage sludge amended soils. In: Internat. Conf. on Heavy Metals in the Environment, Vol. 2, Pathways and Cycling (T.C. Hutchinson (ed.)). Institute for Environmental Studies, University of Toronto, pp. 379–403.

    Google Scholar 

  • Kraut, K. (1906). Uber die Verlreitung des Nickels und Kobalts in der Natur. Z. Angew. Chem. 19: 1793–5.

    Google Scholar 

  • Leyton, L. (1947). Soil conditions of tree growth. I. Physiological aspects of the tree-soil complex. Chem. Industry. XX: 558–60.

    Google Scholar 

  • Lounamaa, J. (1956). Trace elements in plants growing on different rocks in Finland; a semi-quantitative study. Ann. Bot. Soc. Fenn. Vanamo. 29: 1–195.

    Google Scholar 

  • McGovern, P. C. and D. Balsillie (1973). Sulphur dioxide and heavy metal levels and vegetation effects in the Sudbury area. Air Management Branch, Ontario Ministry of the Environment, Sudbury, Ontario.

    Google Scholar 

  • McGovern, P. C. and D. Balsillie (1975). Effects of sulphur dioxide and heavy metals on vegetation in the Sudbury area. Ontario Ministry of the Environment, Northeastern Region, Sudbury, Ontario.

    Google Scholar 

  • McHargue, J. S. (1925). The occurrence of copper, manganese, nickel and cobalt in soils, plants and animals, and their possible function as vital factors. J. Agr. Res. 30: 193–6.

    Google Scholar 

  • Mcllveen, W. D. and D. Balsillie (1977). Chemical element concentrations measured in fruits and vegetables in the Sudbury area (1970–1975). Unpublished Report.

    Google Scholar 

  • Ontario Ministry of the Environment, Northeastern Region, Sudbury, Ontario.

    Google Scholar 

  • Mcllveen, W. D. and D. Balsillie (1978). Air quality assessment studies in the Sudbury area. Vol. 2. Effects of sulphur dioxide and heavy metals on vegetation and soils 1970–1977. Ontario Ministry of the Environment, Northeastern Region, Sudbury, Ontario.

    Google Scholar 

  • MacLean, A. J. and A. J. Dekker (1978). Availability of zinc, copper, and nickel to plants grown in sewage-treated soils. Can. J. Soil Sci. 58: 381–9.

    Google Scholar 

  • Malyuga, D. P. (1964). Biogeochemical Methods of Prospecting. Acad. Sci. Press, Moscow. Translated Consultants Bureau, New York. (Cited in Mishra and Kar (1974).)

    Google Scholar 

  • Millikan, C. R. (1949). Effects on flax of a toxic concentration of cobalt, nickel, etc. in the nutrient solution. Proc. Roy. Soc. (Victoria). 61: 25–42.

    Google Scholar 

  • Minguzzi, C. and O. Vergnano (1953). Il contentuto di elementi inorganici delle plante della formazione oflolitica dell’ Impruneta. Nuovo G. Bot. Ital. 60: 287–319.

    Google Scholar 

  • Mishra, D. and M. Kar (1974). Nickel in plant growth and metabolism. Bot. Rev. 40: 395–452.

    Google Scholar 

  • Mitchell, R. L. (1945). Cobalt and nickel in soils and plants. Soil Sci. 60: 63–70.

    Google Scholar 

  • Mitchell, R. L. (1954). Trace elements in some constituent species of moorland grazing. J. Br. Grassland Soc. 9: 301–11.

    Google Scholar 

  • Nemec, A. (1951). A contribution to the question of stunting growth of pine stands on degraded serpentine soils. Lesn. Pr. 30: 214–36. (In Czech with English summary.)

    Google Scholar 

  • Nemec, A. (1954). Wuckstockungen und Misslingen der Waldkulturen auf Serpentinboden in Sudbokmen infolge der Intoxikationen durch Nickel und Kobalt. Prace Vyk Ustavi Lesn. C.S.R. 6: 7–54. (In Czech with German summary.)

    Google Scholar 

  • Nieboer, E., K. J. Puckett, D. H. S. Richardson, F. D. Tomassini and B. Grace (1975). Ecological and physiological aspects of the accumulation of heavy metals and sulphur in lichen. In: Intern. Conf on Heavy Metals in the Environment, Vol. 2, Pathways and Cycling (T. C. Hutchinson (ed.)), Institute for Environmental Studies, University of Toronto, pp. 331-51.

    Google Scholar 

  • Nomoto, S., M. D. McNeely and F. W. Sunderman (1971). Isolation of a nickel 2-macroglobulin from rabbit serum. Biochem. 10: 1647–51.

    Google Scholar 

  • Ormrod, D. P. (1977). Cadmium and nickel effects on growth and ozone sensitivity of pea. Water, Air Soil Pollut. 8: 263–70.

    Google Scholar 

  • Page, A. L. (1974). Fate and effects of trace elements in sewage sludge whenappliedto agricultural lands. US Environmental Protection Agency, Report EPA-670/2-74-005, Cincinnati, Ohio.

    Google Scholar 

  • Pakarinen, P. and K. Tolonen (1976). Regional survey of heavy metals in peat mosses (Sphagnum). Ambio. 5: 38–40.

    Google Scholar 

  • Patrick, R., T. Bott and R. Larson (1975). The role of trace elements in management of nuisance growth. US Environmental Protection Agency, Corvallis, Oregon.

    Google Scholar 

  • Patterson, J. B. E. (1971). Metal toxicities arising from industry. Technical Bulletin, Ministry of Agriculture, Fisheries and Food, 21: 193–207. Agriculture Development and Advisory Service, Cambridge, England. (Cited in Page (1974).)

    Google Scholar 

  • Petersen, P. J. (1975). Element accumulation by plants and their tolerance of toxic mineral roles. In: Intern. Conf. on Heavy Metals in the Environment, Vol.2, Pathways and Cycling (T. C. Hutchinson (ed.)), Institute for Environmental Studies, University of Toronto, pp. 39-54.

    Google Scholar 

  • Petkova, L. M. and I. P. Lubyanov (1969). Konsentratsiia deiakykh nikroelementiv u makrofitiv vodoim stepvoi Zony Ukrainy. Ukr. Bot. Zh. 26: 90–6.

    Google Scholar 

  • Polacco, J. C. (1976). Nitrogen metabolism in soybean tissue culture. I. Assimilation of urea. Plant Physiol. XX: 350–7.

    Google Scholar 

  • Polacco, J. C. (1977). Nitrogen metabolism in soybean tissue culture. II. Urea utilization and urea synthesis require Ni2+. Plant Physiol. 59: 827–30.

    Google Scholar 

  • Proctor, J. (1971). The plant ecology of serpentine. III. The influence of a high magnesium/calcium ratio and high nickel and chromium levels in some British and Swedish serpentine soils. J. Ecol. 59: 827–42.

    Google Scholar 

  • Proctor, J. and I. D. McGowan (1976). Influence of magnesium on nickel toxicity. Nature. 260: 134.

    Google Scholar 

  • Proctor, J. and S. R. J. Woodell (1975). The ecology of serpentine soils. Adv. Ecol. Res. 9: 255–365.

    Google Scholar 

  • Puckett, K. J. and M. A. S. Burton (1980). Nickel accumulation by bryophytes and lichens. In: Nickel in the Canadian Environment. National Research Council of Canada Monograph, Ottawa, Ontario, Canada.

    Google Scholar 

  • Puckett, K. J. and E. J. Finegan (1980). An analysis of the element content of lichens from the Northwest Territories, Canada. Can. J. Bot. 58: 2073–89.

    Google Scholar 

  • Rauser, W. E. (1978). Early effects of phytotoxic burdens of cadmium, cobalt, nickel, and zinc in white beans. Can. J. Bot. 56: 1744–9.

    Google Scholar 

  • Rebcz, A. N. (1978). The relationships between heavy metals in the soil and their accumulation in various organs of plants growing in the Arctic. Ph.D. Thesis, University of New Brunswick, Fredericton, N.B.

    Google Scholar 

  • Repaske, R. and A. C. Repaske (1976). Quantitative requirements for exponential growth of Alcaligenes eutrophus. Appl. Environ. Microbiol. 32: 585.

    Google Scholar 

  • Roach, W. A. and C. Barclay (1946). Nickel and multiple trace-element deficiencies in agricultural crops. Nature. 157: 696–7.

    Google Scholar 

  • Ruhling, A. and G. Tyler (1970). Sorption and retention of heavy metals in the woodland moss, Hylocomium splendens (Hedw.) Br. et Sech. Oikos. 21: 92–7.

    Google Scholar 

  • Schnitzer, M. and E. H. Hauser (1970). Organo-metallic interactions in soils. 8. An evaluation of methods for the determination of stability constants of metalfulvic acid complexes. Soil Sci. 109: 333–40.

    Google Scholar 

  • Schnitzer, M. and S. I. M. Skinner (1963). Organo-metallic interactions in soils. 1. Reactions between a number of metal ions and the organic matter of a podsol Bh horizon. Soil Sci. 96: 86–93.

    Google Scholar 

  • Schnitzer, M. and S. I. M. Skinner (1967). Organo-metallic interactions in soils. 7. Stability constants of Pb+ +, Ni+ +, Mn+ +, Co+ +, Ca+ +, and Mg+ +-fulvic acid complexes. Soil Sci. 103: 247–52.

    Google Scholar 

  • Severne, C. (1974). Nickel accumulation by Hvbanthus floribundus. Nature Lond. 248: 807–8.

    Google Scholar 

  • Severne, B. C. and R. R. Brooks (1972). A nickel accumulating plant from Western Australia. Planta (Berl.) 103: 91–4.

    Google Scholar 

  • Shacklette, H. T. (1965). Bryophytes associated with mineral deposits and solutions in Alaska. US Geol. Surv. Bull. 1198-C: 1–18.

    Google Scholar 

  • Shewry, P. R. and P. J. Petersen (1976). Distribution of chromium and nickel in plants and soil from serpentine and other sites. J. Ecol. 64: 195–212.

    Google Scholar 

  • Skaar, H., B. Rystad and A. Jensen (1974). The uptake of 3-nickel by the diatom Phaeodactylum tricornutum. Physiol. Plant. 32: 353–8.

    Google Scholar 

  • Smith, N. E. (1943). Micronutrients essential for the growth of Pinus radiate. Australian Forestry. 7: 22.

    Google Scholar 

  • Soane, B. D. and D. H. Saunders (1959). Nickel and chromium toxicity of serpentine soils in southern Rhodesia. Soil Sci. 88: 322–30.

    Google Scholar 

  • Soon, Y. K., T. E. Bates and J. R. Mayer (1980). Land application of chemically treated sewage sludge. III. Effects on soil and plant heavy metal content. J. Environ. Qual. 9: 497–504.

    Google Scholar 

  • Sparling, A. B. (1968). Interactions between blue-green algae and heavy metals. Sc.D. Thesis. Washington University, St. Louis.

    Google Scholar 

  • Spence, D. H. N. (1957). Studies on the vegetation of Shetland. J. Ecol. 45: 917–35.

    Google Scholar 

  • Spence, D. H. N. and E. A. Millar (1963). An experimental study of infertility of Shetland serpentine soil. J. Ecol. 51: 333–63.

    Google Scholar 

  • Spencer, D. (1978). A quantitative study of the effects of nickel of fresh water algae. Ph.D. Thesis, Notre Dame University, Indiana.

    Google Scholar 

  • Stokes, P. M. (1975a). Adaptation of green algae to high levels of copper and nickel in aquatic environments. In: Intern. Conf. on Heavy Metals in the Environment, Vol.2, Pathways and Cycling (T.C. Hutchinson (ed.)), Institute for Environmental Studies, University of Toronto, pp. 137–54.

    Google Scholar 

  • Stokes, P. M. (1975b). Uptake and accumulation of copper and nickel by metaltolerant strains of Scenedesmus. Verh. Internat. Verein. Limnol. 19: 2128–37.

    Google Scholar 

  • Stokes, P. M., T. C. Hutchinson and K. Krauter (1973). Heavy metal tolerance in algae isolated from polluted lakes near the Sudbury Ontario smelters. Can. J. Bot. 15: 2155–68.

    Google Scholar 

  • Swaine, D. J. (1955). The trace-element content of soils. Commonwealth Bur. Soil Sci., Tech. Comm. No. 48. HMSO, London.

    Google Scholar 

  • Temple, P. J. (1978). Phytotoxicology surveys in the vicinity of International Nickel Co., Port Colbourne—1977. Phytotoxicology Section, Air Management Branch, Ontario Ministry of the Environment, Toronto.

    Google Scholar 

  • Terlizzi, D. E. and E. P. Karlander (1979). Soil algae from a Maryland, USA, serpentine formation. Soil Biol. Biochem. 11: 205–7.

    Google Scholar 

  • Tiffin, L. O. (1971). Translocation of nickel in xylem exudate of plants. Plant Physiol. 48: 273–7.

    Google Scholar 

  • Tiffin, L. O. (1972). Translocation of micronutrients in plants. In: Micronutrients in Agriculture (J. J. Mortvedt, P. M. Giordano and W. L. Lindsay (eds)), Soil Sci. Soc. Amer., Madison, Wisconsin, pp. 199–229.

    Google Scholar 

  • Trollope, D. R. and B. Evans (1976). Concentrations of copper, iron, lead, nickel and zinc in freshwater algal blooms. Environ. Pollut. 11: 109–16.

    Google Scholar 

  • Tschugaeff, L. (1905). Determination of nickel. Z. Anorg. Allgem. Chem. 44: 144.

    Google Scholar 

  • Tschugaeff, L. (1905). Chem. Ber. 38: 2520.

    Google Scholar 

  • Udel’nova, T. M., M. A. Pusheva, M. V. Laktionova and A. V. Karyakin (1975). Content of some poly-valent metals in blue-green algae. Microbiol. XX: 904–7.

    Google Scholar 

  • Vanselow, A. P. (1966). Nickel. In: Diagnostic Criteria for Plants and Soils (H. D. Chapman (ed.)), Quality Printing Co., Abilene, Texas, pp. 302–9.

    Google Scholar 

  • Vergnano, O. (1958). Il contentuto di dementi inorganici delle piante della fermazione ofiolitica dell’Impruneta (Firenze). Nicheleo, Cromo e Cobalto. Nuovo G. bot. Ital. 65: 133–62.

    Google Scholar 

  • Vergnano, O. and J. G. Hunter (1953). Nickel and cobalt toxicities in oat plants. Ann. Bot. 17: 317–28.

    Google Scholar 

  • Warren, H. V. and R. E. Delavault (1954). Variations in the nickel content of some Canadian trees. Trans. Royal Soc. Can. XLVIII: 71–4.

    Google Scholar 

  • Whitby, L. M. and T. C. Hutchinson (1974). Heavy metal pollution in the Sudbury mining and smelting region of Canada. II. Soil toxicity tests. Environ. Conserv. 1: 191–200.

    Google Scholar 

  • Wiersma, D. and B. J. Van Goor (1979). Chemical forms of nickel and cobalt in phloem of Ricinus communis. Physiol. Plant. 45: 440–2.

    Google Scholar 

  • Wild, H. (1970). Geobotanical anomalies in Rhodesia. 3. The vegetation of nickelbearing soils. Kirkia. 7: 1–62.

    Google Scholar 

  • Wild, H. and G. H. Wiltshire (1971). The problem of vegetating Rhodesian mine dumps examined. Chamber of Mines J. Rhodesia. 13(11): 26–30; 13(12): 35-7.

    Google Scholar 

  • Wildung, R. E., T. R. Garland and H. Drucker (1979). Nickel complexes with soil microbial metabolites—mobility and speciation in soils. In: Chemical Modeling in Aqueous Systems (A. Jenne (éd.)), Amer. Chem. Soc. Series No. 93, Washington, pp. 181-200.

    Google Scholar 

  • Willett, I. R. and T. Batey (1977). The effects of metal ions on the root surface phosphatase activity of grasses differing in tolerance to serpentine soil. Plant Soil. 48: 213–21.

    Google Scholar 

  • Wolfe, J. (1913). The influence of iron in the development of barley, and the nature of its action. Compt. Rend. Acad. Sci. Paris. 157: 1022–4.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1981 Applied Science Publishers Ltd

About this chapter

Cite this chapter

Hutchinson, T.C. (1981). Nickel. In: Lepp, N.W. (eds) Effect of Heavy Metal Pollution on Plants. Pollution Monitoring Series. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-7339-1_6

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-7339-1_6

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-011-7341-4

  • Online ISBN: 978-94-011-7339-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics