Skip to main content

Uptake of Some Major Mineral Elements by Plants

  • Chapter
Food Chains and Human Nutrition
  • 231 Accesses

Abstract

The major mineral elements taken up from the soil by plant life are N, P, S, K, Ca and Mg, but Na and Cl, which have less specific functions, are included in the context of contributions by other speakers. In this paper no consideration is given, except in passing, to N because this is being dealt with elsewhere. For ease of reference the remaining seven elements are referred to collectively as ‘the major elements’.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Anderson, G. (1967). Nucleic acids, derivatives and organic phosphates, in A. D. McLaren and G. H. Petersen, Soil Biochemistry, Marcel Dekker, New York, pp. 67–90.

    Google Scholar 

  • Anderson, G. (1975). Other organic phosphorus compounds, in J. E. Gieseking, Soil Components, Vol. I. Organic Components, Springer Verlag, New York, pp. 305–31.

    Google Scholar 

  • Anderson, G. and Malcolm, R. E. (1974). The nature of soil organic phosphates, J. Soil Sci., 25, 282–97.

    Article  Google Scholar 

  • Baden, W. (1965). Potash and phosphate application to organic soils, Kali-Briefe, 7, 1.*

    Google Scholar 

  • Baldwin, J. P. (1975). A quantitative analysis of the factors affecting plant nutrient uptake from some soils, J. Soil Sci., 26, 195–206.

    Article  Google Scholar 

  • Bieleski, R. L. (1968). Effect of phosphorus deficiency on levels of phosphorus compounds in Spirodela, Plant Physiol., 43, 1300–16.

    Google Scholar 

  • Coleman, R. G. (1957). The effect of sulphur deficiency on the free amino acids of some plants, Aust. J. Biol. Sci., 10, 50–6.

    Google Scholar 

  • DeKock, P. C., Dyson, P. W., Hall, A. and Grabowska, F. (1975). Metabolic changes associated with calcium deficiency in potato sprouts, Potato Res., 18, 573–81.

    Article  Google Scholar 

  • Duff, R. B., Webley, D. M. and Scott, R. O. (1963). Solubilization of minerals and related materials by 2-ketogluconic acid-producing bacteria, Soil Sci., 95, 105–14.

    Google Scholar 

  • Eaton, F. M. (1966). Chlorine, in H. D. Chapman, Diagnostic Criteria for Plants and Soils, Univ. Calif. Div. Agri. Sci. ( Riverside ), 98–135.

    Google Scholar 

  • Eaton, S. V. (1950). Effects of phosphorus deficiency on growth and metabolism of soybean, Bot. Gaz., 111, 426–36.

    Article  Google Scholar 

  • El-Sheikh, A. M. and Ulrich, A. (1970). Interactions of rubidium, sodium and

    Google Scholar 

  • potassium on the nutrition of sugar beet plants, Plant Physiol., 46, 645–9. Ergel, D. R. and Guinn, G. (1959). Phosphorus compounds of cotton embryos and

    Google Scholar 

  • their changes during germination, Plant Physiol.,34 476–82.

    Google Scholar 

  • Evans, H. J. and Wildes, R. A. (1971). Potassium and its role in enzyme activation, in Potassium in Biochemistry and Physiology, Proc. 8th Coll. Int. Potash Inst., Berne, 13–39.

    Google Scholar 

  • Gartner, J. A. (1969). Effect of fertilizer nitrogen on a dense sward of Kikuyu Paspalum and carpet grass. II. Interactions with phosphorus and potassium, Queensland J. Agri. Anim. Sci.,26 365–72.

    Google Scholar 

  • Haeder, H. E. and Mengel, K. (1972). Translocation and respiration of assimilates in tomato plants as influenced by potassium nutrition, Z. Pflanz. Bodenk., 131, 139–48.*

    Google Scholar 

  • Hall, S. M. and Baker, D. A. (1972). The chemical composition of Ricinus phloem exudate, Planta, 106, 131–40.

    Article  Google Scholar 

  • Heathcote, R. C. (1972). Fertilization with potassium in the Savanna zone of Nigeria, Kali-Briefe, 16, 57.*

    Google Scholar 

  • Hewitt, E. J. (1958). The role of mineral elements in the activity of plant enzyme systems, Encyclopaedia of Plant Physiology, Vol. IV, Springer Verlag, Berlin, 427–70.

    Google Scholar 

  • Hossner, L. R., Freeouf, J. A. and Folsom, B. L. (1973). Solution phosphorus concentration and growth of rice in flooded soils, Proc. Soil Sci. Soc. Amer., 37, 405–8.

    Article  Google Scholar 

  • Humble, G. D. and Raschke, K. (1971). Stomatal opening quantitatively related to potassium transport, Plant Physiol., 48, 447–53.

    Article  Google Scholar 

  • Jackson, P.C. and Hagen, C. E. (1960). Products of orthophosphate absorption by barley roots, Plant Physiol., 35, 326–32.

    Article  Google Scholar 

  • Kirkby, E. A. and Knight, A. H. (1977). The influence of the level of nitrate nutrition on the ion uptake and assimilation, organic acid accumulation and cation-anion balance in whole tomato plants, Plant Physiol., 60, 349–53.

    Article  Google Scholar 

  • Loneragan, J. F. and Asher, C. J. (1967). Response of plants to phosphate concentration in solution culture. II. Rate of phosphate absorption and its relation to growth, Soil Sci., 103, 311–18.

    Article  Google Scholar 

  • Maas, E. V. (1969). Calcium uptake by excised maize roots and interactions with alkali cations, Plant Physiol., 44, 985–9.

    Article  Google Scholar 

  • Marschner, H. (1971). Why can sodium replace potassium in plants, in Potassium in Biochemistry and Physiology, Proc. 8th Coll. Int. Potash Inst., Berne, 50–63.

    Google Scholar 

  • Marschner, H. and Ossenberg-Neuhaus, H. (1977). Effect of 2,3,5-triiodo-benzoic acid on calcium transport and cation exchange capacity in sunflowers, Z. Pflanzen physiologie, 85, 29–44.*

    Google Scholar 

  • Mengel, K., Grimme, H. and Nemeth, K. (1969). Potential and availability of nutrients in soils, Landw, Forsch., 23, 79–91.*

    Google Scholar 

  • Mengel, K. and Kirkby, E. A. (1978). Principles of Plant Nutrition, Int. Potash Inst., Berne, p. 394.

    Google Scholar 

  • Nason, A. (1958). The function of metals in enzyme systems, Soil Sci., 85, 63–77. Neales, T. F. (1956). Components of the total magnesium content within the leaves of white clover and perennial ryegrass, Nature, 177, 388–9.

    Google Scholar 

  • Nowakowski, T. Z. (1971). Effects of potassium and sodium on the contents of soluble carbohydrates and nitrogenous compounds in grass, in Potassium in Biochemistry and Physiology, Proc. 8th Coll. Int. Potash Inst., Berne, 45–9.

    Google Scholar 

  • Okamoto, S. (1967). Effects of potassium nutrition on the glycosis and Krebs cycle in Taro plants, Soil Sci. 0026 Plant Nutr., 13, 143–50.

    Google Scholar 

  • Peaslee, D. E. and Moss, D. N. (1966). Photosynthesis in K- and Mg-deficient maize leaves, Proc. Soil Sci. Soc. Amer., 30, 220–3.

    Article  Google Scholar 

  • Reisenauer, H. M., Walsh, L. M. and Hoeft, R. G. (1973). Testing soils for sulphur, boron, molybdenum and chlorine, in L. M. Walsh and J. D. Beaton, Soil Testing and Plant Analysis, Soil Sci. Soc. Amer. Inc., Wisconsin, 173–200.

    Google Scholar 

  • Russell, E. W. (1973). Soil Conditions and Plant Growth,10th edn, Longman, London, pp. 89 and 605.

    Google Scholar 

  • Russell, R. S. and Barber, D. A. (1960). The relationship between salt uptake and the absorption of water by intact plants, Ann. Rev. Plant Physiol., 1, 127–40.

    Article  Google Scholar 

  • Russell, R. S. and Clarkson, D. A. (1976). Ion transport in root systems, in N. Sunderland, Perspectives in Experimental Biology, Vol. II. Botany, Pergamon Press, Oxford, pp. 401–11.

    Google Scholar 

  • Salmon, R. C. (1964). Calcium-activity ratios in equilibrium soil solutions and the availability of magnesium, Soil Sci., 98, 213–21.

    Article  Google Scholar 

  • Sanders, F. E. and Tinker, P. B. (1973). Phosphate flow into mycorrhizal roots, Pest. Sci., 4, 385–95.

    Article  Google Scholar 

  • Schofield, R. K. (1955). Can a precise meaning be given to ‘available’ soil phosphorus? Soils 0026 Fertilizers, 28, 373–5.

    Google Scholar 

  • Scott, N. M. (1976). Sulphate contents and sorption in Scottish soils, J. Sci. Food Agr., 27, 367–72.

    Article  Google Scholar 

  • Scott, N. M. and Anderson, G. (1976). Organic sulphur fractions in Scottish soils, J. Sci. Food Agr., 27, 358–66.

    Article  Google Scholar 

  • Shomer-Ilan, A. and Waisel, Y. (1973). The effect of sodium chloride on the balance

    Google Scholar 

  • between the C3- and C4-carbon fixation pathways, Physiol. Plant.,29, 190–3. Smith, T. A. and Sinclair, C. (1967). The effect of acid feeding on amine formation in

    Google Scholar 

  • barley, Ann. Botany,31, 103–11.

    Google Scholar 

  • Stenuit, D. F. and Piot, R. (1957). Magnesium an essential element for plant nutrition, Rev. Agr., Brussels, 10e, No. 7–8.

    Google Scholar 

  • Tinker, P. B. (1975). Soil chemistry of phosphorus and mycorrhizal effects on plant growth, in F. E. Sanders, B. Moss and P. B. Tinker, Endomycorrhizas, Academic Press, London, pp. 353–71.

    Google Scholar 

  • Ulrich, A. and Ohki, K. (1966). Potassium, in H. D. Chapman, Diagnostic Criteria

    Google Scholar 

  • for Plants and Soils,Univ. Calif. Div. Agr. Sci. (Riverside), pp. 362–93.

    Google Scholar 

  • Werner, W. (1959). Effect of a magnesium application on potatoes in dependence of soil reaction and nitrogen reform, Kartoffelbau,10 13–14.*

    Google Scholar 

  • Williams, E. G. (1959). Influences of parent material and drainage conditions on soil phosphorus relationships, Agrochimica, 3, 279.

    Google Scholar 

  • Wyn-Jones, R. G. and Lunt, O. R. (1967). The function of calcium in plants, Botan. Rev., 33, 407–26.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1980 Applied Science Publishers Ltd

About this chapter

Cite this chapter

West, T.S., Bache, B.W. (1980). Uptake of Some Major Mineral Elements by Plants. In: Blaxter, K. (eds) Food Chains and Human Nutrition. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-7336-0_10

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-7336-0_10

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-011-7338-4

  • Online ISBN: 978-94-011-7336-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics