Skip to main content

Rhizobial communication with rice roots: Induction of phenotypic changes, mode of invasion and extent of colonization

  • Chapter

Part of the book series: Developments in Plant and Soil Sciences ((DPSS,volume 75))

Abstract

Legume-rhizobial interactions culminate in the formation of structures known as nodules. In this specialized niche, rhizobia are insulated from microbial competition and fix nitrogen which becomes directly available to the legume plant. It has been a long-standing goal in the field of biological nitrogen fixation to extend the nitrogen-fixing symbiosis to non-nodulated cereal plants, such as rice. To achieve this goal, extensive knowledge of the legume-rhizobia symbioses should help in formulating strategies for developing potential rice-rhizobia symbioses or endophytic interactions. As a first step to assess opportunities for developing a rice-rhizobia symbiosis, we evaluated certain aspects of rice-rhizobia associations to determine the extent of predisposition of rice roots for forming an intimate association with rhizobia. Our studies indicate that: a. Rice root exudates do not activate the expression of nodulation genes such as nodY of Bradyrhizobium japonicum USDA110, nodA of R. leguminosarum by. trzfolii, or nodSU of Rhizobium sp. NGR234; b. Neither viable wild-type rhizobia, nor purified chitolipooligosaccharide (CLOS) Nod factors elicit root hair deformation or true nodule formation in rice; c Rhizobia-produced indole-3acetic acid, but neither trans-zeatin nor CLOS Nod factors, seem to promote the formation of thick, short lateral roots in rice; d Rhizobia develop neither the symbiont-specific pattern of root hair attachment nor extensive cellulose microfibril production on the rice root epidermis; e. A primary mode of rhizobial invasion of rice roots is through cracks in the epidermis and fissures created during emergence of lateral roots; f This infection process is nod-gene independent, nonspecific, and does not involve the formation of infection threads; g Endophytic colonization observed so far is restricted to intercellular spaces or within host cells undergoing lysis. h The cortical sclerenchymatous layer containing tightly packed, thick walled fibers appears to be a significant barrier that restricts rhizobial invasion into deeper layers of the root cortex. Therefore, we conclude that the molecular and cell biology of the Rhizobium-rice association differs in many respects from the biology underlying the development of root nodules in the Rhizobium-legume symbiosis.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Al-Mallah M K, Davey M R and Cocking E C 1989 Formation of nodular structures on rice seedlings by rhizobia. J. Exp. Bot. 40, 473–478.

    Google Scholar 

  • Barraquio W L, Revilla L and LadhaJ K 1997 Isolation of endophytic diazotrophic bacteria from wetland rice. Plant Soil 194, 15–24.

    Article  CAS  Google Scholar 

  • Bender G L, Preston L, Barnard D and Rolfe B G 1990 Formation of nodule-like structures on the roots of the non-legumes rice and wheat. In Nitrogen Fixation: Achievements and Objectives. Eds. P M Gresshoff, L E Roth, G Stacey and W E Newton. p 825. Chapman and Hall, London.

    Google Scholar 

  • Boivin C, Camut S, Malpica C A, Truchet G and Rosenberg C 1990 Rhizobium meliloti genes encoding catabolism of trigonellin are induced under symbiotic conditions. Plant Cell 2, 1157–1170.

    Google Scholar 

  • Cassman K G, Peng S, Olk D C, Ladha J K, Reichardt W, Dobermann A and Singh U 1997 Opportunities for increased nitrogen use efficiency from improved resource management in irrigated rice systems. Field Crops Res. (In press)

    Google Scholar 

  • Chalifour F-P and Benhamou N 1989 Indirect evidence for cellulase production by Rhizobium in pea root nodules during bacteroid differentiation: Cytochemical aspects of cellulose breakdown in rhizobial droplets. Can. J. Microbiol. 35, 821–829.

    Article  CAS  Google Scholar 

  • Clark L H and Harris W H 1981 Observations on the root anatomy of rice (Oryza sativa L.). Am. J. Bot. 68, 154–161.

    Article  Google Scholar 

  • Cocking E C, Srivastava J S, Cook J M, Kothari S L and Davey M R 1993 Studies on nodulation of maize, wheat, rice and oilseed rape: interactions of rhizobia with emerging lateral roots. In Biological Nitrogen Fixation–Novel Associations with Non-legume Crops. Eds. N Yanfu, I R Kennedy and C Tingwei. pp 53–58. Qingdao Ocean University Press, Qingdao.

    Google Scholar 

  • Colnaghi R, Green A, He L, Rudnick P and Kennedy C 1997 Strategies for increased ammonium production in free-living or plant associated nitrogen fixing bacteria. Plant Soil 194, 145–154.

    Article  CAS  Google Scholar 

  • Cook D R, VandenBosch K, de Bruijn F J and Huguet T 1997 Model legumes get the nod. Plant Cell 3, 275–281.

    Google Scholar 

  • Cooper J B and Long S R 1994 Morphogenetic rescue of Rhizobium meliloti nodulation mutants by trans-zeatin secretion. Plant Cell 6, 215–225.

    PubMed  CAS  Google Scholar 

  • Dazzo F B, Hollingsworth R, Philip-Hollingsworth S, Robeles M, Olen T, Salzwedel J, Djordjevic M and Rolfe B 1988 Recognition process in the Rhizobium trifolii-white clover symbiosis. In Nitrogen Fixation: Hundred Years After. Eds. H Bothe and F J de Bruijn. pp 431–435. Gustav Fischer, Stuttgart.

    Google Scholar 

  • Dazzo F B, Truchet G L, Sherwood J, Hrabak E M, Abe M and Pankratz H S 1984 Specific phases of root hair attachment in the Rhizobium trifolii-clover symbiosis. Appl. Environ. Microbiol. 48, 1140–1150.

    Google Scholar 

  • De Bruijn F J, Jing Y and Dazzo F B 1995 Potential and pitfalls of trying to extend symbiotic interactions of nitrogen-fixing organisms to presently non-nodulated plants, such as rice. Plant Soil 172, 207–219.

    Article  Google Scholar 

  • Dehio C and de Bruijn F J 1992 The early nodulin gene SrEnod2 from Sesbania rostrata is inducible by cytokinin. Plant J. 2, 117–128

    Google Scholar 

  • Denarie J and Cullimore J 1993 Lipo-oligosaccharide nodulation factors: A minireview. New class of signaling molecules mediating recognition and morphogenesis. Cell 74, 951–954.

    Article  PubMed  CAS  Google Scholar 

  • Dixon R, Cheng Q, Shen G-F, Day A and Dowson-Day M 1997 Nif gene transfer and expression in chloroplasts: prospects and problems. Plant Soil 194, 193–203.

    Article  CAS  Google Scholar 

  • Djordjevic M A, Redmond J W, Batley M and Rolfe B G 1987 Clovers secrete specific phenolic compounds which either stimulate or repress nod gene expression in Rhizobium trifolii. EMBO J. 6, 1173–1179.

    PubMed  CAS  Google Scholar 

  • Dreyfus B L, Alazard D and Dommergues Y R 1984 New and unusual microorganisms and their niches. In Current Perspectives in microbial Ecology. Eds. M J Klug and C A Reddy. pp 161–169. American Society of Microbiology, Washington DC.

    Google Scholar 

  • Fahraeus G 1957 The infection of clover root hairs by nodule bacteria studied by a simple glass slide technique. J. Gen. Microbiol. 16, 374–381.

    PubMed  CAS  Google Scholar 

  • Fukuhara H, Minakawa Y, Akao S and Minarnisawa K 1994 The involvement of indole-3-acetic acid produced by Bradyrhizobimn elkanii in nodule formation. Plant Cell Physiol. 35, 1261–1265.

    CAS  Google Scholar 

  • Geelen D, Mergaert P, Geremia R A, Goormachtig S, Van Montagu M and Holsters M 1993 Identification of nodSUIJ genes in Nod locus 1 of Azorhizobium caulinodans: evidence that nodS encodes a methyltransferase involved in Nod factor modification. Mol. Microbiol. 9, 145–154.

    Google Scholar 

  • Gianinazzi-Pearson V 1996 Plant cell responses to arbuscular mycorrhizal fungi: Getting to the roots of the symbiosis. Plant Cell 8, 1871–1883.

    PubMed  Google Scholar 

  • Goethals K, Van den Eede G, Van Montague M and Holsters M 1990 Identification and characterization of a nodD gene in Azorhizobium caulinodans ORS571. J. Bacteriol. 172, 2658–2666.

    PubMed  CAS  Google Scholar 

  • Gough C, Vasse J, Galera C, Webster G, Cocking E and Dénarié 1 1997 Interactions between bacterial diazotrophs and non-legume dicots: Arabidopci.c thaliana as a model plant. Plant Soil 194, 123–130.

    Article  CAS  Google Scholar 

  • Hirsch A M 1992 Developmental biology of legume nodulation. New Phytol. 122, 211–237.

    Article  Google Scholar 

  • Hirsch A M and Fang Y 1994 Plant hormones and nodulation: what’s the connection? Plant Mol. Biol. 26, 5–9.

    CAS  Google Scholar 

  • Jensen H L 1942 Nitrogen fixation in leguminous plants. I. General characters of root nodule bacteria isolated from species of Medicago and Trifolium in Australia. Proc. Linn. Soc. N.S.W. 66, 98–108.

    Google Scholar 

  • Jing Y, Li G, Jin G, Shan X, Zhang, B Guan C and Li J 1990 Rice root nodules with acetylene reduction activity. In Nitrogen Fixation Achievements and Objectives. Eds. P M Gresshoff, L E Roth, G Stacey and W E Newton. p 829. Chapman and Hall, London.

    Google Scholar 

  • Jing Y, Li G and Shan X 1992 Development of nodule-like structure on rice roots. In Nodulation and Nitrogen Fixation in Rice. Eds. G S Khush and J Bennett. pp 123–126. International Rice Research Institute, Manila.

    Google Scholar 

  • Kennedy I R, Pereg-Gerk L, Wood C, Deaker R, Gilchrist K and Katupitiya S 1997 Biological nitrogen fixation in non-leguminous field crops: Facilitating the evolution of an effective association between Azospirillum and wheat. Plant Soil 194, 65–79.

    Article  CAS  Google Scholar 

  • Kirchhof G, Reis V M, Baldani J I, Eckert B, Döbereiner J and Hartmann A 1997 Occurence, physiological and and molecular analysis of endophytic diazotrophic bacteria in gramineous energy plants. Plant Soil 194, 45–55.

    Article  CAS  Google Scholar 

  • Ladha J K, Kirk G, Bennett J, Peng S, Reddy C K, Reddy P M and Singh U 1997 Opportunities for increased nitrogen use efficiency from improved lowland rice germplasm. Field Crops Res. (In press)

    Google Scholar 

  • Ladha J K and Reddy P M 1995 Extension of nitrogen fixation to rice-necessity and possibilities. Geojournal 35, 363–372.

    Article  Google Scholar 

  • Leong S A, Williams P H and Ditta G S 1985 Analysis of the 5’ regulatory region of the gene for d-amino levulinic acid synthetase of Rhizobium meliloti. Nucl. Acids Res. 13, 5965–5976.

    Google Scholar 

  • Lewin A, Cervantes E, Chee-Hoong W and Broughton W J 1990 nodSU, two new nod genes of the broad host range Rhizobium strain NGR234 encode host-specific nodulation of the tropical tree Leucaena leucocephala. Mol. Plant-Microbe Interact. 3, 317–326.

    Google Scholar 

  • Li G, Jing Y, Shan X, Wang H and Guan C 1991 Identification of rice nodules that contain Rhizobium bacteria. Chin. J. Bot. 3, 8–17.

    Google Scholar 

  • Mateos P, Baker D, Philip-Hollingsworth S, Squartini A, Peruffo A, Nuti M and Dazzo F B 1995 Direct in situ identification of cellulose microfibrils associated with Rhizobium leguminosarum by. trifolii attached to the root epidermis of white clover. Can. J. Microbiol. 41, 202–207.

    Google Scholar 

  • Mateos P, Jiminez-Zurdo, J Chen, A Squartini, S Haack, E Martinez-Molina, D Hubbell and Dazzo F B 1992 Cell-associated pectinolytic and cellulolytic enzymes in Rhizobium leguminosarum by. trifolii. Appt Environ. Microbiol. 58, 1816–1822.

    Google Scholar 

  • Meade H, Long S R, Ruvkun G B, Brown S E and Ausubel F M 1982 Physical and genetic characterization of symbiotic and auxotrophic mutants of Rhizobium meliloti. J. Bacteriol. 149, 114–122.

    PubMed  CAS  Google Scholar 

  • Nap J-P and Bisseling T 1990 Developmental biology of a plant-prokaryote symbiosis: The legume root nodule. Science 250, 948–954.

    Article  PubMed  CAS  Google Scholar 

  • Napoli C A, Dazzo F B and Hubbell D H 1975 Ultrastucture of infection and common antigen relationships in the RhizobiumAeschynomene symbiosis. In Proc. 5th Australian Legume Nodulation Conference. Ed. Napoli C A, Dazzo F B and Hubbell D H. pp 35–37. Brisbane.

    Google Scholar 

  • Orgambide G G, Philip Hollingsworth S, Hollingsworth R T and Dazzo F B 1994 Flavone-enhanced accumulation and symbiosis-related activity of a diglycosyl diacylglycerol membrane glycolipid from Rhizobium leguminosarum by. trifolii. J. Bacteriol. 176, 4338–4347.

    PubMed  CAS  Google Scholar 

  • Peters N K and Long S R 1988 Alfalfa root exudates and compounds which promote or inhibit induction of Rhizobium meliloti nodulation genes. Plant Physiol. 88, 396–400.

    Article  PubMed  CAS  Google Scholar 

  • Philip-Hollingsworth S, Hollingsworth R I and Dazzo F B 1991 N-acetylglutamic acid: an extracellular Nod signal of Rhizobium trifolii ANU843 which induces root hair deformation and nodule-like primordia in white clover roots. J. Biol. Chem. 266,16854— 16858.

    Google Scholar 

  • Plazinski J, Innes R W and Rolfe B G 1985 Expression of Rhizobium trifolii early nodulation genes on maize and rice plants. J Bacteriol. 163, 812–815.

    PubMed  CAS  Google Scholar 

  • Reddy P M, Kouchi H, Hata S and Ladha J K 1996a Homologs of GmENOD93 from rice. eh International Congress on Molecular Plant-Microbe Interactions, Knoxville, TN.

    Google Scholar 

  • Reddy P M, Kouchi H, Hata S and Ladha J K 1996b Identification, cloning and expression of rice homologs of GmN93 7th International Symposium on BNF with Non-Legumes, Faisalabad.

    Google Scholar 

  • Reddy P M and Ladha J K 1995 Can symbiotic nitrogen fixation be extended to rice? In Nitrogen fixation: Fundamentals and Applications. Eds. I A Tikhonovich, N A Provorov, V I Romanov and W E Newton. pp 629–633. Kluwer Academic Publishers, Dordrecht.

    Chapter  Google Scholar 

  • Reddy P M, Ramos M C, Hernandez R J and Ladha J K 1995 Rice-rhizobial interactions. 15th North American Conference on Symbiotic Nitrogen Fixation, Raleigh, NC.

    Google Scholar 

  • Reddy P M, Torrizo L, Ramos M C, Datta S K and Ladha J K 1996e Expression of MtENOD12 promoter driven GUS in transformed rice. 8th International Congress on Molecular Plant-Microbe Interactions, Knoxville, TN.

    Google Scholar 

  • Redmond J W, Batley M, Djordjevic M A, Innes R W, Kuempel P L and Rolfe B G 1986 Flavones induce expression of nodulation genes in Rhizobium. Nature 323, 632–635.

    Article  CAS  Google Scholar 

  • Rolfe B G and Bender G L 1990 Evolving a Rhizobium for non-legume nodulation. In Nitrogen Fixation:Achievements and Objectives. Eds. P M Gresshoff, L E Roth, G Stacey and W E Newton. pp 779–786. Chapman and Hall, London.

    Chapter  Google Scholar 

  • Rolfe B G, Djordjevic M A, Weinman J J, Mathesius U, Pittock C, Gärtner E, Dong Z, McCully M and McIver J 1997 Root morphogenesis in legumes and cereals and the effect of bacterial inoculation on root development. Plant Soil 194, 131–144.

    Article  CAS  Google Scholar 

  • Secilia j and Bagyaraj D J 1992 Selection of efficient vesiculararbuscular mycorrhizal fungi for wetland rice (Oryza saliva L.). Biol. Fert. Soils 13, 108–111.

    Article  Google Scholar 

  • Silver D L, Pinaev A, Chen R and de Bruijn F J 1996 Post-transcriptional regulation of the Sesbania rostrata early nodulin gene SrEnod2 by cytokinin. Plant Physiol. 112, 559–567.

    Google Scholar 

  • Silver D L, Deikman J, Chen R and de Bruijn F J 1997 The SrEnod2 gene is contnolled by a conserved cytokinin signal transduction pathway. Plant Physiol. (In press)

    Google Scholar 

  • Stacey G and Shibuya N 1997 Chitin recognition in rice and legumes. Plant Soil 194, 161–169.

    Article  CAS  Google Scholar 

  • Stoltzfus J R, So R, Malarvizhi P P, Ladha J K and de Bruijn F J 1997 Isolation of endophytic bacteria from rice and assessment of their potential for supplying rice with biologically fixed nitrogen. Plant Soil. 194, 25–36.

    Article  CAS  Google Scholar 

  • Subba-Rao N S, Mateos P F, Baker D, Pankratz H S, Palma J, Dazzo F B and Sprent J I 1995 The unique root nodule symbiosis between Rhizobium and the aquatic legume, Neptunia natans. ( L.F.) Druce. Planta 196, 311–320.

    Google Scholar 

  • Taller B J and Sturtevant D B 1991 Cytokinin production by rhizobia. In Advances in Molecular Genetics of Plant-Microbe Interactions. Vol. 1. Eds. H Hennecke and D P S Verma. pp 215–221. Kluwer Academic Publishers, Dordrecht.

    Google Scholar 

  • Terouchi N and Syono K 1990 Rhizobium attachment and curling in asparagus, rice and oat plants. Plant Cell Physiol. 31, 119–127.

    Google Scholar 

  • Torrey J G 1986 Endogenous and exogenous influences on the regulation of lateral root formation. In New Root Formation in Plants and Cuttings. Eds. M B Jackson. pp 31–66. Martinus Nijhoff Publishers, Dordrecht.

    Chapter  Google Scholar 

  • Trinick M J 1973 Symbiosis between Rhizobium and the non-legume, Trema aspera. Nature 244, 459–460.

    Article  Google Scholar 

  • Truchet G, Debelle F, Vasse J, Terzaghi B, Gamerone A M, Rosenberg C, Batut J, Maillet F and Denarie J 1985 Identification of Rhizobium meliloti Sym2011 region controlling the host specificity of root hair curling and nodulation. J. Bacteriol. 164, 1200–1210.

    PubMed  CAS  Google Scholar 

  • Tsien H C, Dreyfus B L and Schmidt E L 1983 Initial stages in the morphogenesis of nitrogen-fixing stem nodules of Sesbania rostrata. J. Bacteriol. 156, 888–897.

    PubMed  CAS  Google Scholar 

  • Vijn I, das Neves L, van Karmen A, Franssen H and Bisseling T 1993 Nod factors and nodulation in plants. Science 260, 1764–1765.

    Google Scholar 

  • Vincent J M 1970 A manual for the study of root nodule bacteria. IBP Handbook 15, Blackwell Scientific Publ. London. 164 p.

    Google Scholar 

  • Webster G, Gough C, Vasse J, Batchelor C A, O’Callaghan K J, Kothari S L, Davey M R, Dinarii J and Cocking E C 1997 Interactions of rhizobia with rice and wheat. Plant Soil 194, 115–122.

    Article  CAS  Google Scholar 

  • Yanni Y G, Rizk E Y, Conch V, Squartini A, Ninke K, Philip-Hollingsworth S, Orgambide G G, de Bruijn F J, Stoltzfus J, Buckley D, Schmidt T M, Mateos P F, Ladha J K and Dazzo F B 1997 Natural endophytic association between Rhizobium leguminosarum by. trifolii and rice roots and assessment of its potential to promote rice growth. Plant Soil 194, 99–114.

    Article  CAS  Google Scholar 

  • Yuhashi, K-I, Akao S, Fukuhara H, Tateno E, Chun J-Y, Stacey G, Ham H, Kubota M, Asami T and Minamisawa K 1995 Bradyrhizobium elkanii induces outer cortical root swelling in soybean. Plant Cell Physiol. 36, 1571–1577.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

J. K. Ladha F. J. de Bruijn K. A. Malik

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Reddy, P.M. et al. (1997). Rhizobial communication with rice roots: Induction of phenotypic changes, mode of invasion and extent of colonization. In: Ladha, J.K., de Bruijn, F.J., Malik, K.A. (eds) Opportunities for Biological Nitrogen Fixation in Rice and Other Non-Legumes. Developments in Plant and Soil Sciences, vol 75. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-7113-7_9

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-7113-7_9

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-0-7923-4748-4

  • Online ISBN: 978-94-011-7113-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics