Skip to main content

Strategies for increased ammonium production in free-living or plant associated nitrogen fixing bacteria

  • Chapter
Opportunities for Biological Nitrogen Fixation in Rice and Other Non-Legumes

Part of the book series: Developments in Plant and Soil Sciences ((DPSS,volume 75))

Abstract

Strategies considered and studied for achieving ammonium excretion in nitrogen fixing bacteria include 1) inhibition of ammonium assimilation and 2) interference with the mechanisms by which ammonium inhibits either nitrogenase synthesis or activity. These aspects of nitrogen fixation have been best studied in diazotrophic Proteobacteria and Cyanobacteria and those of the former are reviewed in this paper. Ammonium assimilation by glutamine synthetase (GS) can be diminished or prevented by treatment of bacteria with chemicals that inhibit GS activity and in some diazotrophs, such treatment results in excretion of up to 15mM ammonium into liquid growth medium. Also, mutants with altered GS activity, isolated by selection for resistance to GS inhibitors, often excrete ammonium. In Proteobacteria, ammonium inhibits nitrogenase activity and/or synthesis, the latter by preventing activity or expression of NifA, a transcriptional activator required for expression of other nif genes. In Azotobacter vinelandii, ammonium inhibits NifA activity but not its synthesis; NifL mediates this effect by interacting directly with NifA causing its inactivation. In nifL insertion mutants, NifA is constitutively active and up to 10 mM ammonium is excreted during nitrogen fixation. GlnD insertion/deletion mutations are unable to be stably maintained in A. vinelandii wild type but are stable and viable in a mutant that produces constitutively active GS (cannot be adenylylated). This confirms the hypothesis that G1nD is required for activity of GS, an essential enzyme in A. vinelandii. In addition, the stable glnD mutants are Nif—, supporting also the previous conclusion that G1nD is involved in mediating NifL/NifA interaction. Mechanisms of inhibition of synthesis or activity of NifA by ammonium in other diazotrophs are discussed and compared.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Andersen K and Shanmugam K T 1977 Energetics of biological nitrogen fixation: determination of the ratio of formation of H2 to NH4+ catalysed by nitrogenase of Klebsiella pneumoniae in vivo. J. Gen. Microbiol. 103, 107–122.

    PubMed  CAS  Google Scholar 

  • Arcondeguy T, Huez I, Fourment J and Kahn D 1996 Symbiotic nitrogen fixation does not require adenylylation of glutamine synthetase I in Rhizobium meliloti. FEMS Microbiol. Letts. 145, 33–40.

    Google Scholar 

  • Arsene F, Kaminski P A and Elmerich C 1996 Modulation of NifA activitiy by PII in Azospirillum brasilense: Evidence for a regulatory role of the NifA N-terminal domain. J. Bacteriol. 178, 4830–4838.

    Google Scholar 

  • Bali A, Blanco G, Hill S and Kennedy C 1992 Excretion of ammonium by a nifL mutant of nitrogen fixing Azotobacter vinelandii. Appl. Environ. Microbiol. 58, 1711–1718.

    Google Scholar 

  • Blanco G, Drummond M D, Kennedy C and Woodley P 1993 Sequence and molecular analysis of the nifL gene of Azotobacter vinelandii. Mol. Microbiol. 9, 869–879.

    Google Scholar 

  • Contreras C, Drummond M, Bali A, Blanco G, Garcia E, Bush G, Kennedy C and Merrick M 1991 The product of the nitrogen fixation regulatory gene nfrX of Azotobacter vinelandii is functionally and structurally homologous to the uridylyltransferase encoded by ginD in enteric bacteria. J. Bacteriol. 173, 77417749.

    Google Scholar 

  • Dean D and Jacobson M R 1992 Biochemical genetics of nitrogenase. In Biological Nitrogen Fixation Eds. G Stacey, H J Evans and R Bums. pp 763–834. Chapman and Hall, New York.

    Google Scholar 

  • De Bruijn F, Rossbach S, Schneider M, Ratet P, Messmer S, Szeto W, Ausubel F and Schell J 1989 Rhizobium meliloti 1021 has three differentially regulated loci involved in glutamine biosynthesis, none of which is essential for symbiotic nitrogen fixation. J. Bacteriol. 171, 1673–1682.

    Google Scholar 

  • De Zamaroczy M, Paquelin A, Peltre G, Forchhammer K and Elmerich 1996 Coexistence of two structurally similar but functionally different PII proteins in Azospirillium brasilense. J. Bacteriol. 178, 4143–4149.

    Google Scholar 

  • Fosterhartnett D and Kranz R G 1992 Analysis of the promoters and upstream sequences of nifAl and nifA2 in Rhodobacter capsulatus - activation requires NtrC but not RpoN. Mol. Microbiol. 6, 1049–1060.

    Article  CAS  Google Scholar 

  • Gordon J K and Jacobson M R 1983 Isolation and characterization of Azotobacter vinelandii mutant strains with potential as bacterial fertilizer. Can. J. Microbiol. 29, 973–978.

    Article  Google Scholar 

  • Hill S, Austin S, Eydmann T, Jones T and Dixon R 1996 Azotobacter vinelandii NIFL is a fiavoprotein that modulates transcriptional activation of nitrogen-fixation genes via a redox-sensitive switch. Proc. Natl. Acad. Sci. USA 93, 2143–2148.

    Google Scholar 

  • Holtel A and Merrick M J 1989 The Klebsiella pneumoniae PII protein (glnB gene product) is not absolutely required for nitrogen regulation and is not involved in NifL-mediated nif gene regulation. Mol. Gen. Genet. 217, 474–480.

    Article  PubMed  CAS  Google Scholar 

  • Kamberov E S, Atkinson M R and Ninfa A J 1995 The Escherichia coli PII signal transduction protein is activated upon binding 2-ketoglutarate and ATP. J. Biol. Chem. 270, 17797–17807.

    Google Scholar 

  • Keener J and Kustu S 1988 Protein kinase and phosphoprotein phosphatase activities of nitrogen regulatory proteins NTRB and NTRC of enteric bacteria: Roles of the conserved amino-terminal domain of NTRC. Proc. Natl. Acad. Sci. USA 85, 4976–4980.

    Article  PubMed  CAS  Google Scholar 

  • Kerby N W, Musgrave S C, Rowell P, Shestakov S V and Stewart W D 1986 Photoproduction of ammonium by immobilized mutant strains of Anabaena variabilis. Appl. Microbiol. Biotechnol. 24, 42–46.

    Google Scholar 

  • Kim Y M, Hidaka M, Masaki H, Beppu T and Uozumi T 1989 Constitutive expression of nitrogenase system in Klebsiella oxytoca by gene targeting mutation to the chromosomal nifLA operon. J. Biotechnol. 10, 293–301.

    Article  CAS  Google Scholar 

  • La Rossa R A 1996 Mutant selections linking physiology, inhibitors, and genotypes. In Escherichia coli and Salmonella Cellular and Molecular Biology. Ed. F C Neidhardt. pp 2527–2587. ASM Press, Washington D.C.

    Google Scholar 

  • Ladha J K, Rowell P and Stewart W D 1978 Effects of 5hydroxyllysine on acetylene reduction and ammonium assimilation in the cyanobacterium Anabaena cylindricum. Biochem. Biophys. Res. Corn. 83, 688–696.

    Google Scholar 

  • Latorre C, Lee J H, Spiller H and Shanmugam KT 1986 Ammonium ion-excreting cyanobacterial mutant as a source of nitrogen for growth of rice: a feasibility study. Biotech. Letts. 8, 507–512.

    Google Scholar 

  • Lee S, Sevilla M, Meletzus D, Teixeira K, de Oliveira A L, Baldani I and Kennedy C 1997 Analysis of nitrogen fixation and regulatory genes in the sugarcane endophyte Acetohacter diazotrophicus. Plant and Soil (submitted).

    Google Scholar 

  • Liang Y Y, De Zamaroczy M, Arsene F, Paquelin A and Elmerich C 1992 Regulation of nitrogen fixation in Azospirillum brasilense Sp7: Involvement of nifA, glnA and glnB gene products. FEMS 100, 113–120.

    CAS  Google Scholar 

  • Machado H B, Funayama S, Rigo L U and Pedrosa F O 1991 Excretion of ammonia by Azospirillum brasilense resistant to ethylenediamine. Can. J. Microbiol. 37, 549–553.

    Google Scholar 

  • Masepohl B and Klipp W 1996 Organization and regulation of genes encoding the molybdenum nitrogenase and the alternative nitrogenase in Rhodobacter capsulatus. Arch. Microbiol. 165, 80–90.

    Article  CAS  Google Scholar 

  • Meletzus D, Rudnick P, Doetsch N, Green A, and Kennedy C 1997 Characterization of the glnB amtB operon of Azotobacter vinelandii (submitted, J. Bacteriol).

    Google Scholar 

  • Merrick M, Hill S, Hennecke H, Hahn M, Dixon R and Kennedy C 1982 Repressor properties of the nifL gene product of Klebsiella pneumoniae. Mol. Gen. Genet. 185, 75–81.

    Google Scholar 

  • Merrick M and Edwards R 1995a The role of uridylyltransferase in the control of Klebsiella pneumoniae nif gene regulation. Mol. Gen. Genet. 247, 189–198.

    Article  PubMed  Google Scholar 

  • Merrick M J and Edwards R A 19956 Nitrogen Control in Bacteria. Microbiol. Revs. 59, 604–622.

    Google Scholar 

  • Musgrave S C, Kerby N W, Codd G A and Stewart W D P 1982 Sustained ammonia production by immobilized filaments of the nitrogen-fixing cyanobacterium Anabaena 27893. Biotech. Letts. 4, 647–652.

    Google Scholar 

  • Newton J W and Cavins J F 1985 Liberation of ammonia during nitrogen fixation by a facultatively heterotrophic cyanobacterium. Biochim. Biophys. Acta 809, 44–50.

    Article  CAS  Google Scholar 

  • Polukhina L E, Sakhurieva G N and Shestakov S V 1982 Ethylenediamine-resistant Anabaena variabilis mutants with derepressed nitrogen-fixing system. Microbiology 51, 90–95.

    CAS  Google Scholar 

  • Ramos J L, Guerrero M G and Losada M 1984 Sustained photoproduction of ammonia from dinitrogen and water by the nitrogen-fixing cyanobacterium Anabaena sp. strain ATCC 33047. Appl. Environ. Microbiol. 48, 114–118.

    Google Scholar 

  • Reitzer L J 1996 Ammonia assimilation and the biosynthesis of glutamine, glutamate, aspartate, asparagine, L-alanine, and D-alanine. In Escherichia coli and Salmonella Ed. F C Neidhardt. pp 391–407. ASM Press, Washington D.C.

    Google Scholar 

  • Roberts G P and Ludden P W 1992 Control of nitrogen fixation in photosynthetic bacteria. In Biological Nitrogen Fixation. Eds. G Stacey, R H Burris and H J Evans. pp 135–165. Chapman and Hall, New York.

    Google Scholar 

  • Santero E, Toukdarian A, Humphrey R and Kennedy C 1988 Identification and characterisation of two nitrogen fixation regulatory regions ni/A and nfrX in Azotobacter vinelandii and Azotobacter chroococcum. Mol. Microbiol. 2, 303–314.

    Google Scholar 

  • Shanmugam K T and Valentine R C 1975 Microbial production of ammonium ion from nitrogen. Proc. Natl. Acad. Sci. USA 72, 136–139.

    Article  PubMed  CAS  Google Scholar 

  • Singh H N, Singh R K and Sharma R 1983 An L-methionineD,L-sulfoximine-resistant mutant of the cyanobacterium Nostoc muscorum showing inhibitor resistant g-glutamyl-transferase, defective glutamine synthetase and producing extracellular ammonia during N2 fixation. FEBS Lett. 153, 10–14.

    Article  Google Scholar 

  • Souza E M, Machado H B and Yates M G 1995a Deletion analysis of the promoter region of the nifA gene from Herbaspirillum seropedicae. In Nitrogen Fixation: Fundamentals and Applications. Eds. I A Tikhonovich, N A Provorov, V I Romanov and W E Newton. pp 259. Kluwer Academic, Dordrecht.

    Google Scholar 

  • Souza E M, Pedrosa F O, Machado H B, Drummond M and Yates M G I 995b The N-terminus of the NifA protein of Herbaspirillum seropedicae is probably involved in sensing of ammonia. In Nitrogen Fixation: Fundamentals and Applications. Eds. I A Tikhonovich, N A Provorov, V I Romanov and W E Newton. p 260. Kluwer Academic, Dordrecht.

    Google Scholar 

  • Spitler H, Latore C, Hassan M E and Shanmugam K T 1986 Isolation and characterization of nitrogenase-derepressed mutant strains of Cyanobacterium Anabaena variabilis. J. Bacteriol. 165, 412–419.

    Google Scholar 

  • Spitler H and Gunasekaran M 1990 Ammonium-excreting mutant strain of the cyanobacterium Anabaena variabilis supports growth of wheat. Applied Microbiology and Biotechnology 33, 477–480.

    Google Scholar 

  • Stewart W D P and Rowell P 1975 Effects of L-methionine-D,Lsulfoximine on the assimilation of newly fixed NH3, acetylene reduction and heterocyst production in Anabaena cylindrica. Biochem. Biophys. Res. Commun. 65, 846–856.

    Article  PubMed  CAS  Google Scholar 

  • Thomas S P, Zaritsky A and Boussiba S 1990 Ammonium excretion by an L-methionine-DL-sulfoximine-resistant mutant of the rice field cyanobacterium Anabaena siamensis. Appt. Environ. Microbiol. 56, 3499–3504.

    Google Scholar 

  • Toukdarian A, Saunders G, Selman-Sosa G, Santero E, Woodley P and Kennedy C 1990 Molecular analysis of the Azotobacter vinelandii glnA gene encoding glutamine synthetase. J. Bacteriol. 172, 6529–6539.

    PubMed  CAS  Google Scholar 

  • van Heeswijk W C, Rabenberg M, Westerhoff H V and Kahn D 1993 Genes of the glutamine synthetase adenylylation cascade are not regulated by nitrogen in Escherichia coli. Mol. Microbiol. 9, 443–457.

    Google Scholar 

  • van Heeswijk W, Hoving S, Molenaar D, Stegeman B, Kahn D and Westerhoff H V 1996 An alternative PII protein in the regulation of glutamine synthetase in Escherichia coli. Mol. Microbiol. 21, 133–146.

    Google Scholar 

  • Wall J D and Gest H 1979 Derepression of nitrogenase activity in glutamine auxotrophs of Rhodopseudomonas capsulata. J. Bacteriol. 137, 1459–1463.

    PubMed  CAS  Google Scholar 

  • Weare N M 1978 The photoproduction of H2 and NHâ fixed from N2 by a derepressed mutant of Rhodospirillum rubrum. Biochim. Biophys. Acta 502, 486–494.

    Article  PubMed  CAS  Google Scholar 

  • Zhang Y P, Burris R H, Ludden P and Roberts G 1996 Presence of a second mechanism for the posttranslational regulation of nitrogenase activity in Azospirillum brasilense in response to ammonium. J. Bacteriol. 178, 2948–2953.

    PubMed  CAS  Google Scholar 

  • Zimmerman W J and Boussiba S 1987 Ammonia assimilation and excretion in an asymbiotic strain of Anabaena azollae from Azolla filiculoides Lam. J. Plant Physiol. 127, 443–450.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

J. K. Ladha F. J. de Bruijn K. A. Malik

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Colnaghi, R., Green, A., He, L., Rudnick, P., Kennedy, C. (1997). Strategies for increased ammonium production in free-living or plant associated nitrogen fixing bacteria. In: Ladha, J.K., de Bruijn, F.J., Malik, K.A. (eds) Opportunities for Biological Nitrogen Fixation in Rice and Other Non-Legumes. Developments in Plant and Soil Sciences, vol 75. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-7113-7_14

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-7113-7_14

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-0-7923-4748-4

  • Online ISBN: 978-94-011-7113-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics