Skip to main content

Abstract

Like crayfish, lobsters and other Decapod Crustacea, crabs are well endowed with proprioceptors and other mechanoreceptors in their walking legs and chelipeds (Bush & Laverack, 1982). These include joint receptors (chordotonal organs), muscle receptors and tendon (or apodeme) tension receptors, all to some extent functionally analogous with the corresponding sense organs in vertebrates. As in other animals, only the muscle receptors have an efferent innervation. This is comparable to the motor supply of the best known crustacean proprioceptors, the abdominal muscle receptor organs (MROs) of lobsters and crayfish (Fields, 1976).The limb muscle receptors, however, lack any peripheral inhibitory control upon the sensory neurones themselves, of the kind exerted by the ‘accessory nerves’ of the abdominal MROs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Alexandrowicz, J.S. & Whitear, M. (1957). Receptor elements in the coxal region of Decapoda Crustacea. J. mar. biol Ass. U.K, 36, 605–628.

    Google Scholar 

  • Berger, C.S. & Bush, B.M.H. (1979). A non-linear mechanical model of a non-spiking muscle receptor. J. exp. Biol.,83, 339–343.

    Google Scholar 

  • Blight, A.R. & Llinás, R. (1980) The non-impulsive stretch-receptor complex of the crab: a stucby of depolarization-release coupling at a tonic sensorimotor synapse, Phil. Trans. R. Soc. B, 290, 219–276.

    Article  Google Scholar 

  • Bush, B.M.H. (1976). Non-impulsive thoracic. coxal receptors in crustaceans. In Structure and Function of Proprioceptors in the Invertebrates. Ed. Mill, P.J.. Chapman & Hall, London, pp. 115–151.

    Google Scholar 

  • Bush, B.M.H. (1981). Non. impulsive stretch receptors in crustaceans. In Neurones Without Impulses. Eds. Roberts, A. & Bush, B.M.H. Cambridge Universiby Press, London, pp. 147–176.

    Google Scholar 

  • Bush, B.M.H. & Godden, D.H. (1974). Tension changes underlying receptor potentials in non. impulsive crab muscle receptors. J. Physiol., 242, 80–82P.

    Google Scholar 

  • Bush, B.M.H. & Laverack, M.S. (1982). Mechanoreception. In The Biology of Crustacea, Vol 3, Neurobiology: Structure and Function, Eds. Atwood, H.L. & Sandeman, D.C.. Academic Press, NewYork, pp 399–468.

    Google Scholar 

  • Bush, B.M.H. & Roberts, A. (1971). Coxal muscle receptors in the crab: the receptor potentials of S and T fibres in response to ramp stretches. J. exp. Biol. 55, 813–832.

    Google Scholar 

  • Canne A.J. & Bush B.M.H. 1980a. Reflexes mediated by n-impulsive afferent neurones of thoracic. coxal muscle receptor organs in the crab Carcinus maenas. I Receptor potentials and promoter motoneurone responses. J. exp. Biol. 86 275–303

    Google Scholar 

  • Cannone, A.J. & Bush, B.M.H. (1980b). Reflexes mediated by non. impulsive afferent neurones of thoracic-coxal muscle receptor organs in the crab Carcinus maenas. II RefLex discharge evoked by current injection. J. exp. Biol., 86, 305–331.

    Google Scholar 

  • Cannone, A.J. & Bush, B.M.H. (1981a). Reflexes mediated by non impulsive afferent neurones of thoracic. coxal muscle receptor organs in the crab Carcinus maenas. III: Positive feedback to the receptor muscle. J. comp. Physiol., 142, 103–112.

    Article  Google Scholar 

  • Cannone, A.J. & Bush, B.M.H. (1981b). Reflexes mediated by non. impulsive afferent neurones of thoracic. coxal muscle receptor organs in the crab Carcinus maenas. IV. Motor activation of the receptor muscle. J. comp. Physiol., 142, 113–125.

    Article  Google Scholar 

  • Cannone, A.J. & Bush, B.M.H. (1981c). Positive feedback to a muscle receptor stabilized by concurrent self inhibition. Brain Res. 229, 197–202.

    Article  Google Scholar 

  • Cannone, A.J. & Bush, B.M.H. (1982). Dual reflex motor control of non-spiking crab muscle receptor. I: Positive feedback tonically reduced and dynamically stabilized by concurrent inhibition of Rm1. J. comp. Physiol., 148, 365–377.

    Article  Google Scholar 

  • Cannone, AJ. & Bush, B.M.H. (1983). Dual reflex motor control of non-spiking crab muscle receptor. II. Reinforcement of Rm1 mediated positive feedback by dual afferent excitation of Rm2. J. comp. Physiol., 153, 309–320.

    Article  Google Scholar 

  • DiCaprio, R.A. & Clarac, F. (1981). Reversal of a walking leg reflex elicited by a muscle receptor. J. exp. Biol., 90, 197–203.

    Google Scholar 

  • Fields, H.L. (1976). Crustacean abdominal and thoracic muscle receptor organs. In Structure and Function of Proprioceptors in the Invertebrates. Ed. Mill, P.J. Chapman & Hall, London, pp. 65–114.

    Google Scholar 

  • Hunt, C.C. & Ottoson, D (1976). Initial burst of primary endings of isolated mammalian muscle spindles. J. Neurophysiol., 39, 324–330.

    Google Scholar 

  • Matthews, P.B.C. (1972). Mammalian Muscles Receptors and their Central Actions. Edward Arnold, London.

    Google Scholar 

  • Mirolli, M. (1979). The electrical properties of a crustacean sensory dendrite. J. exp. Biol., 78, 1–27.

    Google Scholar 

  • Mirolli, M. (1983). Inward and outward currents in isolated dendrites of Crustacea coxal receptors. Cell, molec Neurobiol., 3, 355–370.

    Article  Google Scholar 

  • Sillar, K.T. (1985). Comparative overview and perspectives. In Coordination of Motor Behaviour. Eds. Bush, B.M.H. & Clarac, F.. Cambridge Universiby Press, London, pp. 303–316.

    Google Scholar 

  • Sillar, K.T. & Skorupski, P. (1985). Central modulation of primary afferent neurons in the crayfish, Pacifastacus leniusculus, is correlated with rhythmic motor output of the thoracic ganglion. (Submitted).

    Google Scholar 

  • Whitear, M. (1965). The fine structure of crustacean proprioceptors. II: The thoracico-coxal organs in Carcinus, Pagurus and Astacus. Phil. Trans. R. Soc., B, 248, 437–456.

    Article  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1985 W.J.P. Barnes and M.H. Gladden

About this chapter

Cite this chapter

Bush, B.M.H., Cannone, A.J. (1985). How do Crabs Control their Muscle Receptors?. In: Barnes, W.J.P., Gladden, M.H. (eds) Feedback and Motor Control in Invertebrates and Vertebrates. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-7084-0_9

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-7084-0_9

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-011-7086-4

  • Online ISBN: 978-94-011-7084-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics