Skip to main content

Feedback Control of an Escape Behaviour

  • Chapter

Abstract

The neuronal basis of escape behaviours has been a favoured subject of neurophysiological investigation for almost fifty years. Among the advantages of studying such systems are the relatively great stereotypy of the movements, simplifying behavioural descriptions, and the large axonal diameter of the participating neurones, permitting ease of experimental analysis. Considerable behavioural and neurophysiological insights have been acquired from studies of escape systems in earthworms (Drewes, 1984), crickets (Murphey, 1981), cockroaches (Camhi, 1980), crayfish (Wine & Krasne, 1982), and teleost fish (Eaton, 1983).

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Burrows, M. (1975). Monosynaptic connexions between wing stretch receptors and flight motor neurons of the locust. J. exp. Biol., 62, 189–219.

    Google Scholar 

  • Camhi, J.M. (1980). The escape system of the cockroach. Scient. Am., 243, 1589–172.

    Article  Google Scholar 

  • Camhi, J.M. & Nolen, T.G. (1981). Properties of the escape system of cockroaches during walking. J. comp. Physiol., 142, 339–346.

    Article  Google Scholar 

  • Camhi, J.M. & Tom, W. (1978). The escape behavior of the cockroach Periplaneta americana. I. Turning responses to wind puffs. J. comp. Physiol., 128, 193–201.

    Article  Google Scholar 

  • Camhi, J.M., Tom, W. & Volman, S. (1978). The escape behavior of the cockroach Periplaneta americana. II Detection of natural predators by air displacement. J. comp, physiol., 128, 203–212.

    Article  Google Scholar 

  • Comer, C. (1981). Effects of killing single giant interneurons on the escape behaviour of the cockroach, Periplaneta americana. Soc. Neurosci. Abstr., 7, 160.

    Google Scholar 

  • Daley, D.L. (1982). Neural basis of wind. receptive fields of cockroach giant interneurons. Brain Res., 238, 211–.216.

    Article  Google Scholar 

  • Daley, D.L. & Delcomyn, F. (1980a). Modulation of the excitabiliby of cockroach giant interneurons during walking. I. Simultaneous excitation and inhibition. J. comp Physiol., 138, 231–239.

    Article  Google Scholar 

  • Daley, D.L. & Delcomyn, F. (1980b). Modulation of the excitabiliby of cockroach giant interneurons during walking. II. Central and peripheral components. J. comp. physiol., 138, 241–251.

    Article  Google Scholar 

  • Delcomyn, F. (1971). The locomotion of the cockroach Periplaneta americana. J. exp. Biol., 54, 445–452.

    Google Scholar 

  • Drewes, C. (1984). Escape reflexes in earthworms and other annelids. In Neural Mechanisms of Startle behavior. Ed. Eaton, R.C. Plenum Press, New York, pp 43–91.

    Google Scholar 

  • Eaton, R.C. & Hackett, J.T. (1984). The role of the Mauthner cell in fast-starts involving escape in teleost fishes. In Neural Mechanisms of Startle behavior. Ed. Eaton, R.C. Plenum Press, New York, pp. 213–266.

    Google Scholar 

  • Gillette, R., Kovak, M.P. & Davis, W.J. (1978). Command neurons in Pleurobrancharea receive synaptic feedback from the motor network they excite. Science, N.Y., 199, 798–801.

    Article  Google Scholar 

  • Horsmann, U., Heinzel, H.-G. & Wendler, G. (1983). The phasic influence of self-generated air current modulations on the locust flight motor. J. comp. Physiol., 150, 427–438.

    Article  Google Scholar 

  • Kennedy, D., Calabrese, R.L. & Wine, J.J. (1974). Presynaptic inhibition: primary afferent depolarization in crayfish neurons. Science, N.Y., 186, 451–454.

    Article  Google Scholar 

  • Murphey, R.K. (1961). The structure and development of a somatotopic map in crickets: the cereal afferent projection. Devl Biol., 88, 236–246.

    Article  Google Scholar 

  • Murphey, R.K. & Palka, J. (1974). Efferent control of cricket giant fibers. Nature, Lond., 248, 249–251.

    Article  Google Scholar 

  • Plummer, M.R. & Camhi, J.M. (1981). Discrimination of sensory signals from noise in the escape system of the cockroach: the role of wind acceleration. J. comp. Physiol., 142, 337–357.

    Article  Google Scholar 

  • Ritzmann, R.E. (1981). Motor responses to paired stimulation of giant interneurons in the cockroach. II The ventral interneurons. J. comp. Physiol.,143, 71–80.

    Article  Google Scholar 

  • Ritzmann, R.E. & Camhi, J.M. (1978). Excitation of leg motor neurons by giant interneurons in the cockroach, Periplaneta americana. J. Comp. Physiol., 125, 305–316.

    Article  Google Scholar 

  • Ritzmann, R.E. & Pollack, A.J. (1981). Motor responses to paired stimulation of giant interneurons in the cockroach. I. The dorsal interneurons. J. comp. Physiol., 143, 61–70.

    Article  Google Scholar 

  • Russell, I.J. (1976). Central inhibition of lateral line input in the medulla of the goldfish by neurons which control body movements. J. comp. Physiol., 111, 335–358.

    Article  Google Scholar 

  • Seiverston, A.I. (1976). Neuronal mechanisms for rhythmic motor pattern generation in a simple system. In Neural Control of Locomotion. Eds. Herman, R.M., Grillner, S., Stein, P.S.G. & Stuart, D.G.. Plenum Press, New York, pp. 317–399.

    Google Scholar 

  • Spira, M.E., Parnas, I. & Bergman, F. (1969). Organization of the giant axons of the cockroach, Periplaneta americana. J. exp. Biol., 50, 615–627

    Google Scholar 

  • Weeks, J.C. (1982). Segmental specialization of a leech swim. initiating interneuron (cell 205). J. Neurosci.,2, 972–985.

    Google Scholar 

  • Wendler, G. (1974). The influence of proprioceptive feedback on locust flight coordination. J. comp. Inysiol., 88, 173–200.

    Article  Google Scholar 

  • Westin, J., Langberg, J.J. & Camhi, J.M. (1977). Responses of giant interneurons of the cockroach Periplaneta americana to wind puffs of different directions and velocities. J. comp. Physiol., 121, 307–324.

    Google Scholar 

  • Wilson, D.M. (1966). Central nervous mechanisms for the generation of rhythmic behavior in arthropods. Symp. Soc. exp. Biol., 20, 199–228.

    Google Scholar 

  • Wine, J.J. & Krasne, F.B. (1982). The cellular organization of crayfish escape behavior. In The Biology of Crustacea, VoL 4, Neural Integration and behavior. Eds. Sandeman, D.C. & Atwood, H.L.. Academic Press, New York, pp. 242–292.

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1985 W.J.P. Barnes and M.H. Gladden

About this chapter

Cite this chapter

Camhi, J.M. (1985). Feedback Control of an Escape Behaviour. In: Barnes, W.J.P., Gladden, M.H. (eds) Feedback and Motor Control in Invertebrates and Vertebrates. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-7084-0_6

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-7084-0_6

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-011-7086-4

  • Online ISBN: 978-94-011-7084-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics