Skip to main content

Are there Central Pattern Generators for Walking and Flight in Insects?

  • Chapter
Feedback and Motor Control in Invertebrates and Vertebrates

Abstract

One of the most influential concepts in the field of motor control is that central pattern generators are primarily responsible for the generation and patterning of rhythmic motor activiby (Delcomyn, 1980; Selverston, 1980).Although the definition of a central pattern generator is not precise (Selverston, 1980), it is generally taken to mean a centrally located system capable of generating, in the absence of input from peripheral receptors, a rhythmic motor pattern similar to that occurring in the normal animal. Sensory input in the intact system is considered to modulate the activiby of the central pattern generator, i.e. increase the overall repetition rate or modify the intensiby of activity, but not function in any important way to establish the basic pattern of the motor output. The purpose of this chapter is to examine whether this view is reasonable for the flight and walking systems of insects.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abbs, J.H. & Gracco, V.L. (1984). Control of complex motor gestures: orofacial muscle responses to load perturbations of lip during speech. J. Neurophsiol., 51 705–723.

    Google Scholar 

  • Altman, J.S. (1975). Changes in the flight motor pattern during the development of the Australian plague locust, Chortoicetes terminifera. J. comp, Physiol., 97, 127–142.

    Article  Google Scholar 

  • Andersson, O., Forssberg, H., Grillner, S. & Wallén, P. (1981). Peripheral feedback mechanisms acting on the central pattern generators for locomotion in fish and cat. Can. J. Physiol. & Pharmacol., 59, 713–726.

    Article  Google Scholar 

  • Eässler, U. & Wegner, U. (1963). Motor output of the denervated ventral nerve cord in the stick insect. Carausius morosus. J. exp. Biol., 105, 127–145.

    Google Scholar 

  • Delcomyn, F. (1960). Neural basis of rhythmic behavior in animals. Science, N.Y., 210, 492–498.

    Article  Google Scholar 

  • Hedwig, B. & Pearson, K.G. (1984). Patterns of synaptic input to identified flight motoneurons in the locust. J. comp. Physiol. 154, 745–760.

    Article  Google Scholar 

  • Horsmann, U., Heinzel, H.G. & Wendler, G. (1983). The phasic influence of self. generated air current modulations on the locust flight motor. J. comp. Physiol., 150, 427–438.

    Article  Google Scholar 

  • Kien, J. & Altman, J.S. (1979). Connections of the locust wing tegula with metathoracic, flight motoneurons. J. comp. Physiol., 135, 299–310.

    Article  Google Scholar 

  • Kutsch, W. (1974). The influence of wing sensory organs on the flight motor pattern in maturing adult locusts. J. comp. Physiol., 88, 413–424.

    Article  Google Scholar 

  • Miller, J.P. & Seiverston, A.I. (1982). Mechanisms underlying pattern generation in lobster stomatogastric ganglion as determined by selective inactivation of identified neurons. IV. Network properties of the pyloric system. J. Neurophysiol., 48, 1416–1432.

    Google Scholar 

  • Möhl, B. & Neumann, I. (1983). Peripheral feedback. mechanisms in the locust flight system. In Bicna Report 2. Ed. Nachtigall, W. Gustav Fischer, Stuttgart, pp 81–87.

    Google Scholar 

  • Neumann, I., Möhl, B. & Nachtigall, W. (1982). Quick phase. specific influence of the tegula on the locust flight motor. Naturwissenschaften, 69, 393–394.

    Article  Google Scholar 

  • Pearson, K.G. (1972). Central programming and reflex control of walking in the cockroach. J. exp Biol., 56, 173–193.

    Google Scholar 

  • Pearson, K.G., Heitler, W.J. & Steeves, J.D. (1980). Triggering of the locust jump by multimodal inhibitory intemeurons. J. Neuropihysiol., 43, 257–278.

    Google Scholar 

  • Pearson, K.G. & Iles, J.F. (1970). Discharge patterns of coxal levator and depressor motoneurones in the cockroach, Periplaneta americana. J. exp. Biol., 52, 139–165.

    Google Scholar 

  • Pearson, K.G. & Iles, J.F. (1973). Nervous mechanisms underlying intersegmental coordination of leg movements during walking in the cockroach. J. exp Biol., 58, 725–744.

    Google Scholar 

  • Pearson, K.G., Reye, D.N. & Robertson, R.M. (1983). Phase-dependent influences of wing stretch receptors on flight rhythm in the locust. J. Neurophysiol., 49, 1168–1181.

    Google Scholar 

  • Robertson, R.M. & Pearson, K.G. (1982). A preparation for the intracellular analysis of neuronal activiby during flight in the locust. J. comp. Physiol., 146, 311–320

    Article  Google Scholar 

  • Robertson, R.M. & Pearson, K.G. (1983). Intemeurons in the flight system of the locust: distribution, connections and resetting properties. J. comp. Neurol., 215, 33–50.

    Article  Google Scholar 

  • Robertson, R.M. & Pearson, K.G. (1984). Neural circuits in the flight system of the locust. J. Neurophysiol. (Submitted for publication).

    Google Scholar 

  • Seiverston, A.I. (1980). Are central pattern generators understandable? Behav. & Brain Sci., 3, 535–571.

    Article  Google Scholar 

  • Waldron, I. (1967). Mechanisms for the production of the motor output pattern in flying locusts. J. exp. Biol., 47, 201–212.

    Google Scholar 

  • Wendler, G. (1974). The influence of proprioceptive feedback on locust flight coordination. J. comp. Physiol., 88, 173–200.

    Article  Google Scholar 

  • Wendler, G. (1963). The locust flight system: functional aspects of sensory. input and methods of investigation. In Biona Report 2. Ed. Nachtigall, W. Gustav Fischer, Stuttgart, pp. 113–125.

    Google Scholar 

  • Wilson, D.M. (1961) The central nervous control of flight in a locust. J. exp. Biol., 33, 471–490.

    Google Scholar 

  • Wilson, D.M. & Gettrup, E. (1963). A stretch reflex controlling wingbeat frequency in grasshoppers. J. exp. Biol., 40, 171–185.

    Google Scholar 

  • Wilson, D.M. & Wyman, R.J. (1965). Motor output patterns during random and rhythmic stimulation of locust thoracic ganglia. Biophys. J., 5, 121–143.

    Article  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1985 W.J.P. Barnes and M.H. Gladden

About this chapter

Cite this chapter

Pearson, K.G. (1985). Are there Central Pattern Generators for Walking and Flight in Insects?. In: Barnes, W.J.P., Gladden, M.H. (eds) Feedback and Motor Control in Invertebrates and Vertebrates. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-7084-0_20

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-7084-0_20

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-011-7086-4

  • Online ISBN: 978-94-011-7084-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics