Skip to main content

Abstract

Cockroach walking is a remarkably adaptable behaviour, for these animals are able to traverse walls, floors and ceilings at rates up to 24 steps per second (Delcomyn, 1971). In adapting locomotory patterns to a variety of terrains, cockroaches encounter problems that are common to all terrestrial animals. Walking movements must be monitored to be efficiently performed, and unexpected loads, due to variations in the environment, must be rapidly counterbalanced. To resolve these problems, the cockroach central nervous system must incorporate information provided by limb proprioceptors into the patterns of motor activity used in walking. While the economy of design of sensory and motor systems of these animals has permitted extensive investigations of the response properties and reflex effects of these receptors (Mill, 1976), the basic questions of how inputs from specific proprioceptors are used in the adaptation of walking and which parameters of locomotion are determined by these inputs have often remained unresolved. This has been due, in part, to the following difficulties that arise in the interpretation of data obtained from isolated preparations: 1. Determining the adequate stimulus of a receptor. Proprioceptors were defined by Sherrington (1906) as somatic sense organs that are stimulated by ‘actions of the body itself’. However, as is apparent, all receptors of limb muscles and joints respond to a variety of external stimuli as well (Lissmann, 1950). Receptors that monitor forces resulting from muscle contractions, for example, also respond to external loads and simple predictions of their patterns of discharge in walking are not feasible. 2. Determining the effectiveness of reflexes in locomotion. A reflex implies a fixed relationship between a change in afferent input and changes in motor neurone activity (Sherrington, 1906). However, most reflexes studied have been found to be quite variable. Many reflexes show substantial changes in gain (intensity of motor neurone discharge) depending upon the behaviour (Forssberg et al., 1977) or state (Bässler, 1983) of the animal. Reflexes of both vertebrates and invertebrates can also be changed by training (Melvill Jones & Watt, 1971; Zill & Forman, 1983; Forman & Zill, 1984). In addition, 3ince the time of the earliest account of proprioceptive reflexes, many reflexes have been demonstrated to show ‘reflex reversals’, that is complete changes in reflex sign (Graham Brown, 1911; Bässler, 1976; DiCaprio & Clarac, 1981; Vedel, 1982). In most cases, the functions of these reversals or the mechanisms underlying this reflex plasticity are unknown.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Barnes, W.J.P., Spirito, C.P. & Evoy, W.H. (1972). Nervous control of walking in the crab, Cardisoma guanhumi. II. Role of resistance reflexes in walking. Z vergl. Physiol., 76, 16–31.

    Article  Google Scholar 

  • Bässler, U. (1976). Reversal of a reflex to a single motoneuron in the stick insect Carausius morosus. Biol. Cybern., 24, 47–49.

    Article  Google Scholar 

  • Bässler, U. (1983). Neural Basis of Elementary Behavior in Stick Insects. Springer Verlag, Berlin.

    Book  Google Scholar 

  • Bässler, U. & Wegner, U. (1983). Motor output of the denervated thoracic ventral nerve cord in the stick insect Carausius morosus. J. exp. Biol., 105, 127–1

    Google Scholar 

  • Becht, G. (1958). Influence of DDT and lindane on chordotonal organs in the cockroach. Nature, Lond., 181, 777–779.

    Article  Google Scholar 

  • Brodfuehrer, P. & Fourtner, C.R. (1985). Reflexes evoked by the femoral and coxal chordotonal organs in the cockroach, Periplaneta americana. Comp. Biochem. Physiol., 74A, 169–174.

    Article  Google Scholar 

  • Burns, M.D. & Usherwood, P.N.R. (1979). The control of walking in Orthoptera. II.Motor neurone activiby in normal free. walking animals. J. exp. Biol., 79, 69–96.

    Google Scholar 

  • Delcomyn, F. (1969). Reflexes and locomotion in the American cockroach Ph.D. Thesis, Universiby of Oregon.

    Google Scholar 

  • Delcomyn, F. (19/71). The locomotion of the cockroach Periplaneta americana. J. exp. Biol., 54, 443–452.

    Google Scholar 

  • Delcomyn, F. (1981). Insect locomotion on land. In Locomotion and Energetics in Arthropods. Eds. Herreid, C.F. & Fourtner, C.R.. Plenum Press, New York, pp. 103–125.

    Chapter  Google Scholar 

  • Delcomyn, F. & Usherwood, P.N.R. (1973). Motor activiby during walking in the cockroach Periplaneta americana. I. Free walking. J. exp. Biol., 59, 629–642.

    Google Scholar 

  • DiCaprio, R.A. & Clarac, F. (1981). Reversal of a walking leg reflex elicited by a nuscle receptor. J. exp. Biol., 90, 197–205.

    Google Scholar 

  • Forman, R.R. & Zill, S.N. (1984). Leg position learning by an insect.2. Motor strategies underlying learned leg extension. J. Neurobiol., 15, 221–257.

    Article  Google Scholar 

  • Forssberg, H., Grillner, S. & Rossignol, S. (1977). Phasic gain control of reflexes from the dorsum of the paw during spinal locomotion. Brain Res., 132, 121–129.

    Article  Google Scholar 

  • Graham, D & Bässler, U. (1961). Effects of afference sign reversal on motor activiby in walking stick insects (Carausius morosus). J. exp. Biol., 91., 179-185

    Google Scholar 

  • Graham Brown, T. (1911). Studies in the physiology of the nervous system. VIII.Neural balance and reflex reversal with a note on progression in the decerebrate guinea. pig. Q.Jl exp. PHysiol., 4, 275–288.

    Google Scholar 

  • Guthrie, D.M. (1967). Multipolar stretch receptors and the insect leg reflex. J. Insect Physiol., 13, 1637–1644.

    Article  Google Scholar 

  • Hoyle, G. (1964). Exploration of neuronal mechanisms underlying behavior in insects. In Neural Theory and Modeling. Ed. Reiss, R.. Stanford Universiby Press, pp. 346–376.

    Google Scholar 

  • Hoyle, G. (1976). Arthropod walking. In Neural Control of Locomotion. Eds. Herman, R.M., Grillner, S., Stein, P.S.G. & Stuart, D.G.. Plenum Press, New York, pp. 137–179.

    Google Scholar 

  • Hughes, G.M. (1952). The co-ordination of insect movements. I. The walking movements of insects. J. exp. Biol., 29, 267–284.

    Google Scholar 

  • Krauthamer, V. & Fourtner, C.R. (1978). Locomotory activiby in the extensor and flexor tibiae of the cockroach Periplaneta americana. J. Insect Physiol., 24 813–819.

    Article  Google Scholar 

  • Liske, E. & Mohren, W. (1984). Saccadic head movements of the praying mantis, with particular reference to visual and proprioceptive information. Physiol. Entomol., 9, 29–58.

    Article  Google Scholar 

  • Lissmann, H.W. (1950). Proprioceptors, Symp. Soc. exp. Biol., 4, 34–59.

    Google Scholar 

  • Melvill Jones, G. & Watt, D.G.D. (1971). Observations on the control of stepping and hopping movements in man. J. Physiol., 219, 709–727.

    Google Scholar 

  • Mill, P.J. (1976). Structure and Function of Proprioceptors in the Invertebrates. Chapman and Hall, London.

    Google Scholar 

  • Nijenhuis, E.D. & Dresden, D. (1952). A micro-morphological study on the sensory supply of the mesothoracic leg of the American cockroach Periplaneta americana. Proc. Sect. Sci. K. ned. Akad. Wet. C, 55, 300–310.

    Google Scholar 

  • Pearson, K.G. (1972). Central programming and reflex control of walking in the cockroach. J. exp. Biol., 56, 173–193.

    Google Scholar 

  • Pearson, K.G. (1976). The control of walking. Scient. Am., 235, 72–86.

    Article  Google Scholar 

  • Pearson, K.G. & Fourtner, C.R. (1975). Nonspiking interneurons in walking system of the cockroach. J. Neurophysiol., 38, 33–52.

    Google Scholar 

  • Pearson, K.G. & Iles, J.F. (1970). Discharge patterns of coxal levator and depressor motoneurones of the cockroach, Periplaneta americana. J. exp. Biol, 52, 139–165.

    Google Scholar 

  • Pearson, K.G., Wong, R.K.S. & Fourtner, C.R. (1976). Connexions between hair-plate afferents and motoneurones in the cockroach leg J. exp. Biol., 64, 251–266.

    Google Scholar 

  • Pringle, J.W.S. (1958a). Proprioception in insects. I. A new type of mechanical receptor from the palps of the cockroach. J. exp. Biol., 15, 101–113.

    Google Scholar 

  • Pringle, J.W.S. (1938b). Proprioception in insects. II. The action of the campaniform sens. ilia on the legs. J. exp. Biol., 15, 114–131

    Google Scholar 

  • Pringle, J.W.S. (1961). Proprioception in arthropods. In The Cell and the Organism. Eds. Eamsay, J.A. & Wigg Lesworth, V.B. Cambridge University Press, London, pp. 256–282.

    Google Scholar 

  • Reingold, S. & Camhi, J.M. (1977). A quantitative analysis of rhythmic leg movements during three different behaviors in the cockroach, Periplaneta americana. J. Insect Physiol., 23, 1407–1420.

    Article  Google Scholar 

  • Runion, H.L. & Usherwood, P.N.R. (1966). A new approach to neuromuscular analysis in the intact free. walking insect preparation. J. Insect Physiol., 12, 1255–1263.

    Article  Google Scholar 

  • Sherman, E., Novotny, M. & Camhi, J.M. (1977). A modified walking rhythm employed during righting behavior in the cockroach Gromphadorhina portentosa. J. comp Physiol., 113, 303–316.

    Article  Google Scholar 

  • Sherrington, C. (1906). The Integrative Action of the Nervous System. Charles Scribner’s Sons, New York.

    Google Scholar 

  • Vedel, J.P. (1982). Reflex reversals resulting from active movements in the antenna of the rock lobster. J. exp. Biol., 101, 121–133.

    Google Scholar 

  • Wendler, G. (1966). The co. ordination of walking movments in arthropods. Symp. Soc. exp. Biol., 20, 229–250.

    Google Scholar 

  • Wilson, D.M. (1965). Proprioceptive leg reflexes in cockroaches. J. exp. Biol., 43, 397–409.

    Google Scholar 

  • Wong, R.K.S. & Pearson, K.G. (1976). Properties of the trochanteral hair plate and its function in the control of walking in the cockroach. J. exp. Biol., 64, 233–249.

    Google Scholar 

  • Young, D. (1970). The structure and function of a connective chordotonal organ in the cockroach leg. Phil. Trans. R. Soc. B, 256, 401–428.

    Article  Google Scholar 

  • Zill, S.N. & Forman, R.R. (1983). Proprioceptive reflexes change when an insect assumes an active, learned posture. J. exp. Biol., 107, 385–390.

    Google Scholar 

  • Zill, S.N. & Moran, D.T. (1981a). The exoskeleton and insect proprioception. I. Responses of tibial campaniform sensilla to external and muscle-generated forces in the American cockroach, Periplaneta americana. J. exp. Biol., 91. 1–24.

    Google Scholar 

  • Zill, SN. & Moran, D.T. (1981b). The exoskeleton and insect proprioception. III Activiby of tibial campaniform sensilla during walking in the American cockroach, Periplaneta americana. J. exp. Biol., 94, 57–75.

    Google Scholar 

  • Zill, S.N. & Moran, D.T. (1982). Suppression of reflex postural tonus: a role of peripheral inhibition in insects. Science, N.Y., 216, 751–752

    Article  Google Scholar 

  • Zill, S.N., Moran, D.T. & Varela, F.G. (1981). The exoskeleton and insect proprioception. IL Reflex effects of tibial campaniform sensilla in the Americana cockroach, Periplaneta americana. J. exp. Biol., 94, 43–55.

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1985 W.J.P. Barnes and M.H. Gladden

About this chapter

Cite this chapter

Zill, S.N. (1985). Proprioceptive Feedback and the Control of Cockroach Walking. In: Barnes, W.J.P., Gladden, M.H. (eds) Feedback and Motor Control in Invertebrates and Vertebrates. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-7084-0_12

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-7084-0_12

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-011-7086-4

  • Online ISBN: 978-94-011-7084-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics