Skip to main content

Abstract

This is a paper about sensory information, rather than motor control. It is common for motor control physiologists to proceed by stating what information the somatosensory system should provide to service their particular theories of motor control. This often leads to attempts to “find” the right sensory information, to interpret what is found in narrow and even misleading ways, and even to criticise when what should be there is manifestly not. I wish only to summarise what sensory information is likely to be present and to speculate briefly about what might be done with it.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abraham, L.D. & Loeb, G.E. (1985). The distal hindlimb musculature of the cat: patterns of normal use. Expl. Brain Res, (In press).

    Google Scholar 

  • Appenteng, K., Prochazka, A., Proske, U. & Wand, P. (1982). Effect of fusimotor stimulation on Ia discharge during shortening of cat soleus muscle at different speeds. J. Physiol., 329, 509–526.

    Google Scholar 

  • Boyd, I.A. (1954). The histological structure of the receptors in the knee-joint of the cat correlated with their physiological response. J. Physiol., 124, 476–488.

    Google Scholar 

  • Boyd, I.A. (1981). The action of the three types of intrafusal fibre in isolated cat muscle spindles on the dynamic and length sensitivities of primary and secondary sensory endings. In Muscle Receptors and Movement. Eds. Taylor, A. & Prochazka, A., MacMillan, London, pp. 17–32.

    Google Scholar 

  • Brink, E., Harrison, P.J., Jankowska, E., McCrea, D.A & Skoog, B. (1983). Post synaptic potentials in a population of motoneurones following activiby of single interneurones in the cat. J. Physiol., 343, 341–359.

    Google Scholar 

  • Burke, D. (1981). The activiby of human muscle spindle endings during normal motor behavior. In International Review of Physiology, Neurophysiology IV. Ed. Porter, R.. Universiby Park Press, Baltimore, pp. 91–126.

    Google Scholar 

  • Cameron, W., Binder, M., Botterman, B., Reinking, R. & Stuart, D. (1981). “Sensory partitioning” of cat medial gastrocnemius muscle by its muscle spindles and tendon organs. J. Neurophysiol., 46, 32–47.

    Google Scholar 

  • Clark, F.J. & Burgess, P.R. (1975). Slowly adapting receptors in cat knee joint: can they sigial joint angle? J. Neurophysiol., 38, 1448–1463.

    Google Scholar 

  • Czarkowska, J., Jankowska, E. & Sybirska, E. (1981). Common interneurones in reflex pathways from group Ia and Ib afferents of knee flexors and extensors in the cat. J. Physiol., 310, 367–380.

    Google Scholar 

  • Duysens, J. & Loeb, G.E. (1980). Modulation of ipsi. and contralateral reflex responses in unrestrained walking cats. J. Neurophysiol., 44, 1024–1037.

    Google Scholar 

  • Forssberg, H. (1979). Stumbling corrective reaction: a phase. dependent compensatory reaction during locomotion. J. Neurophysiol., 42, 936–953.

    Google Scholar 

  • Forssberg, H., Grillner, S., Rossignol, S. & Wallén, P. (1976). Phasic control of reflexes during locomotion in vertebrates. In Neural Control of Locomotion. Eds. Herman, R.M., Grillner, S., Stein, P.S.G. & Stuart, D.G.. Plenum, New York, pp. 647–674.

    Google Scholar 

  • Granit, R. (1975). The functional role of the muscle spindles-facts and hypotheses. Brain, 98, 531–556.

    Article  Google Scholar 

  • Grigg, P. (1976). Response of joint afferent neurons in cat medial articular nerve to active and passive movements of the knee. Brain Res., 118, 482–485.

    Article  Google Scholar 

  • Harrison, P.J., Jankowska, E. & Johannisson, T. (1983). Shared reflex pathways of group I afferents of different cat hind. limb muscles. J. Physiol., 358, 113–127.

    Google Scholar 

  • Hassan, Z. & Houk, J.C. (1975). Transition in sensitiviby of spindle receptors that occurs when muscle is stretched more than a fraction of a millimeter. J. Physiol., 38, 673–689.

    Google Scholar 

  • Hoffer, J.A. & Loeb, G.E. (1983). A technique for reversible fusimotor blockade during chronic recording from spindle afferents in walking cats. Expl. Brain Res. Suppl., 7, 272–279.

    Article  Google Scholar 

  • Houk, J.C. (1979). Regulation of stiffness by skeletomotor reflexes. A. Rev. Physiol., 41, 99–114.

    Article  Google Scholar 

  • Hulliger, M., Matthews, P.B.C. & Noth, J. (1977a). Static and dynamic fusimotor action on the response of Ia fibres to low frequency sinusoidal stretching of widely ranging amplitude. J. Physiol., 267, 811–858.

    Google Scholar 

  • Hulliger, M., Matthews, P.B.C. & Noth, J. (1977b). Effects of combining static and dynamic fusimotor stimulation on the response of the muscle spindle primary ending to sinusoidal stretching. J. Physiol., 267, 839–856.

    Google Scholar 

  • Jankowska, E. & McCrea, D.A. (1983). Shared reflex pathways from Ib tendon organ afferents and Ia muscle spindle afferents in the cat. J. Physiol., 338, 99–111.

    Google Scholar 

  • Jankowska, E., McCrea, D & Mackel, R. (1981a). Pattern of ‘non. reciproca’ inhibition of motoneurones by impulses in group Ia muscle spindle afferents in the cat. J. Physiol., 316, 395–409.

    Google Scholar 

  • Jankowska, E., McCrea, D & Mackel, R. (1961b). Oligostynaptic excitation of motoneurones by impulses in group Ia muscle spindle afferents in the cat. J. Physiol., 316, 411–425.

    Google Scholar 

  • Loeb, G.E. (1961). Somatosensory unit input to the spinal cord during normal walking. Can. J. Physiol. & Pharmacol., 59, 627–655.

    Article  Google Scholar 

  • Loeb, G.E. (1984). The control and response of muscle spindles during normally executed motor tasks. Exercise & Sport Sci. Rev., 12, 157–204.

    Google Scholar 

  • Loeb, G.E., Bak, M.J. & Duysens, J. (1977). Long-term unit recording from somatosensory neurons in the spinal ganglia of the freely walking cat. Science, N.Y., 197, 1192–1194.

    Article  Google Scholar 

  • Lucas, S.M. & Binder, M.D. (1984). Topographic factors in distribution of homonymous group Ia afferent input to cat medial gastrocnemius motoneurons. J. Neurophysiol., 51, 50–65.

    Google Scholar 

  • Lucas, S.M., Cope, T.C. & Binder, M.D. (1984). Analysis of individual Ia-afferent EPSPs in a homonymous motoneuron pool with respect to muscle topography. J. Neurophysiol., 51, 64–74.

    Google Scholar 

  • Lundberg, A., Malmgren, K. & Schomburg, E.D. (1977). Cutaneous facilitation of transmission in reflex pathways from Ib afferents to motoneurones. J. Physiol., 265, 765–780.

    Google Scholar 

  • Murthy, K.S.K (1978). Vertebrate fusimotor neurones and their influences on motor behavior. Prog. Neurobiol., 11, 249–307.

    Article  Google Scholar 

  • Powers, R.K. & Binder, M.D. (1981). Analysis of heteronymous group Ib synaptic input to the cat medial gastrocnemius motoneuron pool. Soc Neurosci. Abstr., 7, 561.

    Google Scholar 

  • Prochazka, A. & Wand, P. (1980). Tendon organ discharge during voluntary movement in cats. J. Physiol., 303, 385–590.

    Google Scholar 

  • Richmond, F.J.R. & Bakker, D.A. (1982). Anatomical organization and sensory receptor content of soft tissues surrounding upper cervical vertebrae in the cat. J. Neurophysiol., 48, 49–61.

    Google Scholar 

  • Stein, R.B. (1974). The peripheral control of movement. Physiol. Rev., 54, 215–245.

    Google Scholar 

  • Stuart, D.G. & Stephens, J.A. (1976). The recruitment order of motor units and its significance for the behaviour of tendon organs during normal muscle activity. In The Motor System; Neurophysiology and Muscle Mechanisms. Ed. Shahani, M. Elsevier, Amsterdam, pp. 37–47.

    Google Scholar 

  • Tracey, D (1978). Joint receptors-changing ideas. Trends Neurosc., 1 65–65.

    Google Scholar 

  • Vallbo, A.B., Hagbarth, K.-E., Torebjörk, H.E. & Wallin, B.G. (1979). Somatosensory, proprioceptive, and sympathetic activiby in human peripheral nerves. Physiol. Rev., 59, 919–957.

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1985 W.J.P. Barnes and M.H. Gladden

About this chapter

Cite this chapter

Loeb, G.E. (1985). What the Cat’s Hindlimb Tells the Cat’s Spinal Cord. In: Barnes, W.J.P., Gladden, M.H. (eds) Feedback and Motor Control in Invertebrates and Vertebrates. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-7084-0_11

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-7084-0_11

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-011-7086-4

  • Online ISBN: 978-94-011-7084-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics