Skip to main content

Abstract

The cerebral cortex is the most distinctive feature of the human brain. It is composed almost entirely of neocortex, the most recent part of the cortex to develop in the evolutionary timescale. Archicortex (hippocampus) and paleocortex (olfactory cortex) form only a small fraction of cerebral cortex in man.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Bibliography

Review articles and books

  • Brooks, V. B. (ed) (1981) Handbook of Physiology, sect. 1, vol.2, part 2, Williams and Wilkins, Baltimore.

    Google Scholar 

  • Caminiti, R., Johnson, P. B. and Burnod, Y. (eds) Control of Arm Movement in Space, Springer-Verlag, Berlin.

    Google Scholar 

  • Georgopoulos, A. P., Kalaska, J. F., Crutcher, M. D. et al. (1984) The representation of movement direction in the motor cortex: single cell and population studies, in G. M. Edelman, W. E. Gall and W. M. Cowan (eds), Dynamic Aspects of Neocortical Function, John Wiley and Sons, New York, pp. 501–524.

    Google Scholar 

  • Humphrey, D. R., and Freund, H. J. (1991) Motor control: concepts and issues, John Wiley, Chichester.

    Google Scholar 

  • Ito, M. (ed.) (1989) Neural Programming, Karger, Basel.

    Google Scholar 

  • Lemon, R. N. (1990) Mapping the output functions of the motor cortex, in G. M. Edelman, W. E. Gall, W. N. Cowan (eds.), Signal and Sense, Wiley-Liss, New York, pp. 315–355.

    Google Scholar 

  • Passingham, R. E. (1987) Two cortical systems for directing movement, in Motor Areas of the Cerebral Cortex, Ciba Foundation Symposium 132, John Wiley, Chichester, pp. 151-164.

    Google Scholar 

  • Phillips, C. G. and Porter, R. (1977) Corticospinal neurones. Their role in movement, Academic Press, London.

    Google Scholar 

  • Rothwell, J. C., Thompson, P. D., Day, B. L. et al (1991) Stimulation of the human motor cortex through the scalp, Exp. Physiol., 76, 159–200.

    PubMed  CAS  Google Scholar 

  • Stein, J. F. (1989) Representation of egocentric space in the posterior parietal cortex, Q. J. Exp. Physiol., 74, 583–606.

    PubMed  CAS  Google Scholar 

Original papers

  • Adams, R. W., Gandevia, S. C. and Skuse, N. F. (1990) The distribution of muscle weakness in upper motoneurone lesions affecting the lower limbs, Brain, 113, 1459–1476.

    Article  PubMed  Google Scholar 

  • Andersen, P., Hagan, P. J., Phillips, C. G. and Powell, T. T. S. (1975) Mapping by microstimulation of overlapping projections from area 4 to motor units of the baboon’s hand, Proc. Roy. Soc. Lond. (Biol), 188, 31–60.

    Article  CAS  Google Scholar 

  • Asanuma, H. (1981) The pyramidal tract, in V. B. Brooks (eds), Handbook of Physiology, sect. 1, vol. 2, part 2, Williams and Wilkins, Baltimore, pp. 703–733.

    Google Scholar 

  • Brinkman, C. (1981) Lesions in supplementary motor area interfere with a monkey’s performance of a bimanual coordination task, Neurosci Lett., 27, 267–270.

    Article  PubMed  CAS  Google Scholar 

  • Brinkman, C. (1984) Supplementary motor area of the monkey’s cerebral cortex: short-and long-term deficits after unilateral ablation and the effects of subsequent collosal section, J. Neurosci., 4, 918–929.

    PubMed  CAS  Google Scholar 

  • Brinkman, J. and Kuypers, H. G. J. M. (1973) Cerebral control of contralateral and ipsilateral arm, hand and finger movements in the split-brain rhesus monkey, Brain, 96, 653–674.

    Article  PubMed  CAS  Google Scholar 

  • Brodal, A. (1981) Neurological Anatomy in Relation to Clinical Medicine, Oxford University Press, Oxford.

    Google Scholar 

  • Bucy, P. C., Keplinger, J. E. and Sequiera, E. B. (1964) Destruction of the pyramidal tract in man, J. Neurosurg., 21, 385–398.

    Article  Google Scholar 

  • Butler, E. G., Home, M. K. and Rawson, J. A. (1992) Sensory characteristics of monkey thalamic and motor cortex neurones, J. Physiol 445, 1–24.

    PubMed  CAS  Google Scholar 

  • Buys, E. J., Lemon, R. N., Mantel, G. W. H. and Muir, R. B. (1986) Selective facilitation of different hand muscles by single corticospinal neurones in the conscious monkey, J. Physiol, 381, 529–549.

    PubMed  CAS  Google Scholar 

  • Cheney, P. D. and Fetz, E. E. (1980) Functional classes of primate corticomotoneuronal cells and their relation to active force, J. Neurophysiol., 44, 773–791.

    PubMed  CAS  Google Scholar 

  • Cheney, P. D. and Fetz, E. E. (1984) Corticomotoneuronal cells contribute to long-latency stretch reflexes in the rhesus monkey, J. Physiol., 349, 249–272.

    PubMed  CAS  Google Scholar 

  • Cheney, P. D. and Fetz, E. E. (1985) Comparable patterns of muscle facilitation evoked by individual corticomotoneuronal (CM) cells and by single intracortical microstimuli in primates: evidence for functional groups of CM cells, J. Neurophysiol., 53, 786–804; 805-820.

    PubMed  CAS  Google Scholar 

  • Chollet, F., DiPierot V., Wise, R. J. S. et al. (1991) The functional anatomy of motor recovery after stroke in humans: a study with positron emission tomography, Ann. Neurol., 29, 63–71.

    Article  PubMed  CAS  Google Scholar 

  • Cohen L. G., Bandinelli, S., Findley, T. W. and Mattett, M. (1991), Motor reorganisation after upper limb amputation in man, Brain 114, 615–627.

    Article  PubMed  Google Scholar 

  • Colebatch, J. G. and Gandevia, S. C. (1989) The distribution of muscular weakness in upper motoneurone lesions affecting the arms, Brain, 112, 749–763.

    Article  PubMed  Google Scholar 

  • Colebatch, J. G., Deiber M.-P., Passingham, R. E. et al. (1991) Regional cerebral blood flow during voluntary arm and hand movements in human subjects, J. Neurophysiol, 65, 1392–1401.

    PubMed  CAS  Google Scholar 

  • Day, B. L., Rothwell, J. C, Thompson, P. D. et al. (1989) Delay in the execution of voluntary movement by electrical or magnetic brain stimulation in intact man: evidence for storage and motor programmes in the brain, Brain, 112, 649–663.

    Article  PubMed  Google Scholar 

  • Deiber, M. P., Passingham, R. E., Colebatch, J. G. et al. (1991) Cortical areas and the selection of movement: a study with positron emission tomography, Exp. Brain Res., 84, 393–402.

    Article  PubMed  CAS  Google Scholar 

  • Denny-Brown, D. (1966) The cerebral control of movement, University Press, Liverpool.

    Google Scholar 

  • DeRenzi, E. and Barbieri, C. (1992) The incidence of the grasp reflex following hemispheric lesion and its relation to frontal damage, Brain 115, 293–313.

    Article  Google Scholar 

  • Dum, R. P. and Strick, P. L. (1991) The origin of corticospinal projections from the premotor areas in the frontal lobes, J. Neurosci., 11, 667–689.

    PubMed  CAS  Google Scholar 

  • Evarts, E. V. (1966) Pyramidal tract activity associated with a conditioned hand movement in the monkey, J. Neurophysiol., 29, 1011–1027.

    PubMed  CAS  Google Scholar 

  • Evarts, E. V. (1968) Relation of pyramidal tract activity to force exerted during voluntary movement, J. Neurophysiol., 31, 14–27.

    PubMed  CAS  Google Scholar 

  • Evarts, E. V. (1972) Pre-and post-central neuronal discharge in relation to learned movement, in T. Frigyesi, E. Rinvik and M. D. Yahr (eds), Cortico-thalamic Projections and Sensorimotor Activities, Raven Press, New York, pp. 449–458.

    Google Scholar 

  • Evarts, E. V. (1973) Motor cortex reflexes associated with learned movement, Science, 179, 501–503.

    Article  PubMed  CAS  Google Scholar 

  • Evarts, E. V. (1981) Role of motor cortex in voluntary movements in primates, in V. B. Brook (ed.), Handbook of Physiology, sect. 1, vol. 2, part 2, Williams and Wilkins, Baltimore, pp. 1083–1120.

    Google Scholar 

  • Evarts, E. V., Fromm, C., Kroller J. and Jennings, V. A. (1983) Motor cortex control of finely graded forces, J. Neurophysiol., 49, 1199–1215.

    PubMed  CAS  Google Scholar 

  • Fetz, E. E., Cheney, P. D., Mewes, K. and Palmer, S. (1989) Control of forelimb activity by populations of corticomotoneuronal and rubromotoneuronal cells, Prog. Brain Res., 80, 437–449.

    Article  PubMed  CAS  Google Scholar 

  • Friedman, D. P. and Jones, E. G. (1981) Thalamic input to areas 3a and 2 in monkeys, J. NeurophysioL 45, 59–85.

    PubMed  CAS  Google Scholar 

  • Gentilucci, M., Forgassi, L., Luppino, G. et al. (1989) Somatotopic representation in inferior area 6 of the macaque monkey, Brain Behav. Evol., 33, 118–121.

    Article  PubMed  CAS  Google Scholar 

  • Georgopoulos, A. P. (1989) Motor cortex and reaching, in M. Ito (ed.) Neural programming, Karger, Basel, pp. 3–12.

    Google Scholar 

  • Georgopoulos, A. P., Kalaska, J. F., Caminiti, R. and Massey, J. T. (1982) On the relations between the direction of two dimensional arm movements and cell discharge in primate motor cortex, J. Neurosci., 2, 1527–1537.

    PubMed  CAS  Google Scholar 

  • Georgopoulos, A. P., Crutcher, M. D. and Schwartz A. B (1989a) Cognitive spatial-motor processes. 3. Motor cortical prediction of movement direction during an instructed delay period, Exp. Brain Res., 75, 183–194.

    Article  PubMed  CAS  Google Scholar 

  • Georgopoulos, A. P., Lurito, Petrides, S. M. et al. (1989b) Mental rotation of the neuronal population vector, Science, 243, 234–236.

    Article  PubMed  CAS  Google Scholar 

  • Georgopoulos, A. P., Ashe J., Smyrnis N. and Taira, M. (1992) The motor cortex and the coding of force, Science 256, 1692–1695.

    Article  PubMed  CAS  Google Scholar 

  • Geschwind, N. and Damasio, A. R. (1985) Apraxia, in J. A. M Fredericks (ed.) Handbook of Clinical Neurology, vol. 1 (45), Elsevier, Amsterdam, pp. 423–432.

    Google Scholar 

  • Grafton, S. T., Mazziotta, J. C., Woods, R. P. and Phelps, M. E. (1992) Human functional anatomy of visually-guided finger movements, Brain, 115, 565–587.

    Article  PubMed  Google Scholar 

  • Halsband, U. and Freund, H.-J. (1990) Premotor cortex and conditional motor learning in man, Brain, 103, 207–222.

    Article  Google Scholar 

  • Hocherman, S. and Wise, S. P. (1991) Effects of hand movement path on motor cortical activity in awake, behaving rhesus monkeys, Exp. Brain Res. 83, 285–302.

    Article  PubMed  CAS  Google Scholar 

  • Humphrey, D. R. (1986) Representation of movements and muscles within the primate precentral motor cortex: historical and current perspectives, Fed. Proc. 45, 2687–2699.

    PubMed  CAS  Google Scholar 

  • Humphrey, D. R. and Tanji, J. (1991) What features of voluntary motor control are incoded in the neuronal discharge of different cortical motor areas? in D. R. Humphrey and H. J. Freund (eds.) Motor Control: Concepts and Issues, John Wiley, Chichester, pp. 413–444.

    Google Scholar 

  • Ikeda, A. and Shibasaki, H. (1992) Invasive recording of movement-related cortical potentials in humans, J. Clin. Neurophysiol., 9, 509–520.

    Article  PubMed  CAS  Google Scholar 

  • Johnson, P. B. (1991) Toward an understanding of the cerebral cortex and reaching movements: a review of recent approaches, in R. Caminiti, P. B. Johnson and Y. Burnod (eds.), Control of Arm Movement in Space, Springer Verlag, Berlin, pp. 199–261.

    Google Scholar 

  • Kalaska, J. F., Crammond, D. J., Cowan, D. A. D. et al. (1991) Comparison of cell discharge in motor, pre-motor and parietal cortex during reaching, in R. Caminiti, P. B. Johnson and Y Burnod (eds) Control of Arm Movement in Space, Springer Verlag, Berlin, pp. 129–146.

    Google Scholar 

  • Kasser, R. J., and Cheney, P. D. (1985) Characteristics of corticomotoneuronal post-spike facilitation and reciprocal suppression of EMG activity in the monkey, J. Neurophysiol, 53, 959–978.

    PubMed  CAS  Google Scholar 

  • Kurata, K. and Wise, S. P. (1988a) Premotor cortex of rhesus monkeys: set-related activity during two conditional motor tasks, Exp. Brain. Res., 69, 327–343.

    Article  PubMed  CAS  Google Scholar 

  • Kurata, K. and Wise, S. P. (1988b) Premotor and supplementary motor cortex in rhesus monkeys: neuronal activity during externally-and internally-instructed motor tasks, Exp. Brain Res., 72, 237–248.

    Article  PubMed  CAS  Google Scholar 

  • Kwan, H. C., MacKay, W. A., Murphy, J. T. and Wong, Y. C. (1978) Spatial organisation of precentral cortex in awake primates. II. Motor outputs, J. Neurophysiol., 41, 1120–1131.

    PubMed  CAS  Google Scholar 

  • Laplane, D., Talairach, J., Meininger, V. et al. (1977) Clinical consequences of corticectomies involving the supplementary motor area in man, J. Neurol. Sci. 34, 301–314.

    Article  PubMed  CAS  Google Scholar 

  • Lawrence, D. G. and Kuypers, H. G. J. M. (1968) The functional organisation of the motor system in the monkey, Parts 1 and 2, Brain, 91, 1–14; 15-36.

    Article  PubMed  CAS  Google Scholar 

  • Lemon, R. N. (1988) The output map of the primate motor cortex. Trends Neurosci. 11, 501–506.

    Article  PubMed  CAS  Google Scholar 

  • Libet, B., Gleason, C. A., Wright, E. W. and Pearl, D. K. (1983) Time of conscious-intention to act in relation to onset of cerebral activity (readiness potential), Brain, 106, 623–642.

    Article  PubMed  Google Scholar 

  • Matelli, M. and Luppino, G. (1991) Anatomo-functional parcelation of the agranular frontal cortex, in R. Caminiti, P. D. Johnson and Y. Burnod (eds) Control of Arm Movement in Space, Springer Verlag, Berlin, pp. 85–101.

    Google Scholar 

  • Mitz, A. R. and Wise, S. P. (1987) The somatotopic organisation of the supplementary motor area: intracortical microstimulation mapping, J. Neurosci. 7, 1010–1021.

    PubMed  CAS  Google Scholar 

  • Muir, R. B. and Lemon, R. N. (1983) Corticospinal neurones with a special role in precision grip, Brain Res., 261, 312–316.

    Article  PubMed  CAS  Google Scholar 

  • Mushiake, H., Inase, M. and Tanji, J. (1991) Neuronal activity in the primate premotor, supplementary, and precentral motor cortex during visually-guided and internally-determined sequential movement, J. Neurophysiol., 66, 705–718.

    PubMed  CAS  Google Scholar 

  • Obeso, J. A., Rothwell, J. C. and Marsden, C. D. (1985) The spectrum of cortical myoclonus, Brain, 108, 193–224.

    Article  PubMed  Google Scholar 

  • Penfield, W. and Jasper, H. H. (1954) Epilepsy and the functional anatomy of the human brain, Little Brown, Boston.

    Google Scholar 

  • Penfield, W. and Welch, K. (1951) Supplementary motor area of the cerebral cortex, Arch. Neurol. Psychiatr., 66, 289–317.

    CAS  Google Scholar 

  • Riehle, A. and Requin, J. (1989) Monkey primary motor and premotor cortex: single-cell activity related to prior information about direction and extent of an intended movement, J. Neurophysiol, 61, 534–549.

    PubMed  CAS  Google Scholar 

  • Rosen, I. and Asanuma, H. (1972) Peripheral afferents to the forelimb area of the monkey motor cortex: input-output relation, Exp. Brain Res., 14, 257–273; 243-256.

    Article  PubMed  CAS  Google Scholar 

  • Rothwell, J. C., Obeso, J. A. and Marsden, C. D. (1984) On the significance of giant somatosensory evoked potentials in cortical myoclonus, J. Neurol. Neurosurg. Psychiatr., 47, 33–42.

    Article  PubMed  CAS  Google Scholar 

  • Rothwell, J. C, Obeso, J. A. and Marsden, C. D. (1986) Electrophysiology of somatosensary reflex myoclonus, Adv. Neurol., 43, 353–366.

    Google Scholar 

  • Ruch, T. C. and Fetz, E. E. (1979) The cerebral cortex: its structure and motor functions, in T. Ruch and H. D. Patton (eds.) Physiology and Biophysics, vol. II, W. B. Saunders, Philadelphia, pp. 53–122.

    Google Scholar 

  • Sanes, J. N. and Donoghue, J. P. (1991) Organisation and adaptability of muscle representations in primary motor cortex, in R. Caminiti, P. B. Johnson and Y. Burnod (eds), Control of Arm Movement in Space, Springer Verlag, Berlin, pp. 103–127.

    Google Scholar 

  • Schell, G. R. and Strick, P. L. (1984) The origin of thalamic inputs to the arcuate premotor and supplementary motor area, J. Neurosci., 4, 539–560.

    PubMed  CAS  Google Scholar 

  • Schiebel, M. H., Davies, T. L., Lindsay, R. D. et al. (1974) Basilar dendrite bundles of giant pyramidal cells, Exp. Neurol. 42, 307–319.

    Article  Google Scholar 

  • Shima, K., Iya, K., Mushiake, H. et al. (1991) Two movement-related foci in the primate cingulate cortex observed in signal-triggered and self-paced following movement, J. Neurophysiol, 65, 188–202.

    PubMed  CAS  Google Scholar 

  • Shinoda, Y., Yokota, J. I. and Futani, T. (1981) Diverse projection of individual corticospinal axons to motoneurones of multiple muscles in the monkeys, Neurosci. Lett., 23, 7–12.

    Article  PubMed  CAS  Google Scholar 

  • Strick, P. L. and Preston, J. B. (1982) Two representations of the hand in area 4 of a primate. I. Motor output organisation, J. Neurophysiol., 48, 139–149.

    PubMed  CAS  Google Scholar 

  • Tanji, J. and Evarts, E. V. (1976) Anticipatory activity of motor cortex neurones in relation to direction of an intended movement, J. Neurophysiol., 39, 1063–1068.

    Google Scholar 

  • Tanji, J., Okano, K. and Sato, K. C. (1988) Neuronal activity in cortical motor areas related to ipsilateral, contralateral, bilateral digit movements of the monkey, J. Neurophysiol., 60, 325–343.

    PubMed  CAS  Google Scholar 

  • Twitchell, T. E. (1951) The restoration of motor function following hemiplegia in man, Brain., 74, 443–480.

    Article  PubMed  CAS  Google Scholar 

  • Wiesendanger, M. (1981) Organisation of secondary motor areas of cerebral cortex, in V. B. Brooks (ed.) Handbook of Physiology, sect. 1, vol. 2 part 2, Williams and Wilkins, Baltimore, pp. 1121–1147.

    Google Scholar 

  • Wiesendanger, M. and Miles, T. S. (1982) Ascending pathway of low threshold muscle afferents to the cerebral cortex and its possible role in motor control, Physiol. Rev., 62, 1234–1270.

    PubMed  CAS  Google Scholar 

  • Wise, S. P. and Mauritz, K.-H. (1985) Set-related neuronal activity in the premotor cortex of rhesus monkeys: effects of changes in motor set, Proc. Roy. Soc. B., 223, 331–354.

    Article  CAS  Google Scholar 

  • Wise, S. P., Alexander, G. E., Altman et al. (1991) What are the specific functions of the different motor areas? D. R. Humphrey and H. J. Freund (eds) Motor Control: Concepts and Issues, John Wiley, Chichester, pp. 463–485.

    Google Scholar 

  • Woolsey, C. N., Settlage, P. H., Meyer, D. R. et al. (1952) Patterns of localisation in precentral and supplementary motor areas and their relation to the concept of the premotor area, Res. Pub. Ass. Nerv. Ment. Dis., 30, 238–264.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1994 John Rothwell

About this chapter

Cite this chapter

Rothwell, J. (1994). Cerebral cortex. In: Control of Human Voluntary Movement. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-6960-8_9

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-6960-8_9

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-0-412-47700-3

  • Online ISBN: 978-94-011-6960-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics