Skip to main content

Part of the book series: Studies in Chemical Physics ((SCP))

  • 137 Accesses

Abstract

The most comprehensive available treatment for the analysis of the electronic behavior of molecules is that of molecular orbital (MO) theory. The theory has been used to describe many aspects of molecular structure and such diverse molecular properties as optical absorption spectra, electronic dipole moments, and electron and nuclear magnetic resonance. Numerous texts exist on the treatment of molecular orbital theory at various levels of approximation. Streitweiser [1] considers Hückel’s π electron theory in detail. Later works by Salem [2] and Murrell [3] develop the self-consistent theory for π electron systems. Finally, Pople and Beveridge [4] consider more recent approximate molecular orbital theories which may be applied to all valence electrons of a general three-dimensional molecule.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. A. Streitweiser, Molecular Orbital Theory for Organic Chemists, John Wiley & Sons. New York (1961).

    Google Scholar 

  2. L. Salem, The Molecular Orbital Theory of Conjugated Systems, W. A. Benjamin, New York (1966).

    Google Scholar 

  3. J. N. Murrell. The Theory of the Electronic Spectra of Organic Molecules, Methuen, London (1963).

    Google Scholar 

  4. J. A. Pople and D. L. Beveridge, Approximate Molecular Orbital Theory, McGraw-Hill, New York (1970).

    Google Scholar 

  5. M. Tinkham, Group Theory and Quantum Mechanics, McGraw-Hill, New York (1964).

    Google Scholar 

  6. R. S. Mulliken, C. A. Rieke, D. Orloff and H. Orloff, J. Chem. Phys. 17 1248 (1949).

    Article  CAS  Google Scholar 

  7. H. Bethe, Ann. Physik, 3 133 (1929).

    Article  CAS  Google Scholar 

  8. C. J. Ballhausen. Introduction to Ligand Field Theory, McGraw-Hill, New York (1962).

    Google Scholar 

  9. B. N. Figgis, Introduction to Ligand Fields, Interscience, New York (1966).

    Google Scholar 

  10. E. U. Condon and G. H. Shortley, The Theory of Atomic Spectra, Cambridge University Press, London (1964).

    Google Scholar 

  11. G. Racah, Phys. Rev., 62 438 (1942).

    Article  CAS  Google Scholar 

  12. G. Racah, Phys. Rey., 63 367 (1943).

    Article  CAS  Google Scholar 

  13. Y. Tanabe and S. Sugano, J. Phys. Soc. Japan, 9 753 (1954).

    Article  CAS  Google Scholar 

  14. Y. Tanabe and s. Sugano, J. Phys. Soc. Japan, 9 766 (1954).

    Article  CAS  Google Scholar 

  15. J. S. Griffith, The Theory of Transition Metal Ions, Cambridge University Press, London (1964).

    Google Scholar 

  16. J. S. Griffith, J. Inorg. Nucl. Chem. 2 229 (1956).

    Article  CAS  Google Scholar 

  17. C. K. Jorgensen, Progr. Inorg. Chem., 4 73 (1962).

    Article  Google Scholar 

  18. R. S. Mulliken, J. Am. Chem. Soc., 74 811 (1952).

    Article  CAS  Google Scholar 

  19. R. S. Mulliken, J. Phys. Chem., 56 801 (1952).

    Article  CAS  Google Scholar 

  20. R. S. Mulliken, J. Chim. Phys., 61 20 (1964).

    CAS  Google Scholar 

  21. R. S. Mulliken and W. B. Person, Molecular Complexes, Wiley-Interscience, New York (1969).

    Google Scholar 

  22. R. Foster, Organic Charge Transfer Complexes, Academic Press, London (1969).

    Google Scholar 

  23. M. L. S. Dewar and A. R. Lepley, J. Am. Chem. Soc., 83 4560 (1961).

    Article  CAS  Google Scholar 

  24. J. N. Murrell, J. Am. Chem. Soc., 81 5037 (1959).

    Article  CAS  Google Scholar 

  25. J. N. Murrell, Quart. Rev. (London), 15 191 (1961).

    Article  CAS  Google Scholar 

  26. R. L. Flurry, JR., J. Phys. Chem. (Ithaca), 69 1927 (1965).

    Article  CAS  Google Scholar 

  27. S. Iwata, J. Tanaka and s. NagakuraJ. Am. Chem. Soc., 88 894 (1966).

    Article  CAS  Google Scholar 

  28. K. E. Shuler, J. Chem. Phys., 20 1865 (1952).

    Article  CAS  Google Scholar 

  29. J. C. A. Boeyens, J. Phys. Chem., 71 2969 (1967).

    Article  CAS  Google Scholar 

  30. A. W. Lawson, Prog. Metal Phys. 6 1 (1956).

    Article  CAS  Google Scholar 

  31. D. Adler in Solid State Physics, Vol. 21, edited by F. Seitz, D. Turnbull and H. Ehrenreich, Academic Press, New York (1968).

    Google Scholar 

  32. N. F. Mott, Proc. Phys. Soc. (London) A62 416 (1949).

    Article  Google Scholar 

  33. N. F. Mott, Comments on Solid State Physics II, 183 (1970).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1973 H. G. Drickamer and C. W. Frank

About this chapter

Cite this chapter

Drickamer, H.G., Frank, C.W. (1973). Theories of Electronic Energy Levels in Molecules and Solids. In: Electronic Transitions and the High Pressure Chemistry and Physics of Solids. Studies in Chemical Physics. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-6896-0_2

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-6896-0_2

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-011-6898-4

  • Online ISBN: 978-94-011-6896-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics