Skip to main content

Ascorbate Oxidase Structure and Chemistry

  • Chapter
Bioinorganic Chemistry of Copper

Abstract

The activation of dioxygen in biological systems has been the focus of interest of biochemists, bioinorganic chemists, and physiologists for many years. A whole body of literature exists on this topic. Furthermore, special conferences have been devoted to this subject and one of the last of these meetings should be mentioned here whose proceedings have been published by King et al..1 Enzymes involved in direct oxygen activation are oxidases and oxygenases. Oxygenases introduce either one atom of dioxygen into substrate and reduce the other atom to water (monooxygenases) or transfer two oxygen atoms into substrate (dioxygenases). Oxidases can be divided in two-electron and four-electron transferring enzymes. The first group reduces dioxygen to hydrogen peroxide and the second one dioxygen to water. Most of the oxygenases as well as oxidases contain as prosthetic groups either flavin, iron (heme or non-heme) or copper.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. T.E. King, H.S. Mason and M. Morrison, Eds., Progress in Clinical and Biological Research, 274, 1 (1988).

    Google Scholar 

  2. R.A. Capaldi, Annu. Rev. Biochemistry, 59, 569 (1990).

    Article  CAS  Google Scholar 

  3. R. Malkin and B.G. Malmström, Adv. Enzymol., 33, 177 (1970).

    PubMed  CAS  Google Scholar 

  4. G. Chichiricco, M.P. Ceru, A. D’Alessandro, A. Oratore and L. Avigliano, Plant Sci., 64, 61 (1989).

    Article  CAS  Google Scholar 

  5. J.A. Fee, Struct. Bonding, 23, 1 (1975).

    Article  CAS  Google Scholar 

  6. A. Marchesini, P. Cappalletti, L. Canonica, B. Danieli and S. Tollari, Biochim. Biophys. Acta, 484, 290 (1977).

    PubMed  CAS  Google Scholar 

  7. V.S. Butt, in The Biochemistry of Plants. A Comprehensive Treatise. Metabolism and Respiration, R. Davies, Ed., (Academic Press, London and New York, 1980), pp. 85–95.

    Google Scholar 

  8. J. Ohkawa, N. Okada, A. Shinmyo and M. Takano, Proc. Natl. Acad. Sci. USA., 86, 1239 (1989).

    Article  PubMed  CAS  Google Scholar 

  9. M. Esaka, T. Hattori, K. Fujisawa, S. Sakojo and T. Asahi, Eur. J. Biochem., 191, 537 (1990).

    Article  PubMed  CAS  Google Scholar 

  10. A. Messerschmidt, A. Rossi, R. Ladenstein, R. Huber, M. Bolognesi, G. Gatti, A. Marchesini, R. Petruzzelli and A. Finazzi-Agro, J. Mol. Biol., 206, 513 (1989).

    Article  PubMed  CAS  Google Scholar 

  11. A. Messerschmidt, R. Ladenstein, R. Huber, M. Bolognesi, L. Avigliano, R. Petruzzelli, A. Rossi and A. Finazzi-Agro, J. Mol. Biol., 224, 179 (1992).

    Article  PubMed  CAS  Google Scholar 

  12. A. Messerschmidt, W. Steigemann, R. Huber, G. Lang and P.M.H. Kroneck, Eur. J. Biochem., in press (1992).

    Google Scholar 

  13. A. Messerschmidt, H. Luecke and R. Huber, J. Mol. Biol., submitted (1992).

    Google Scholar 

  14. A. Messerschmidt, and R. Huber, Eur. J. Biochem., 187, 341 (1990).

    Article  PubMed  CAS  Google Scholar 

  15. G. D’Andrea, J.P. Bowstra, J.P. Kamerling and F.G. Vliegenthart, Glycoconjugate, 5, 151 (1988).

    Article  Google Scholar 

  16. K.D. Karlin, J.C. Hayes, Y. Gultneh, R.W. Cruse, J.W. McKnown, J.P. Hutchinson and J. Zubieta, J. Amer. Chem. Soc., 106, 2121 (1984).

    Article  CAS  Google Scholar 

  17. P. Chaudhuri, D. Ventor, K. Wieghardt, E. Peters, K. Peters and A. Simon, Angew. Chemie, 97, 55 (1985).

    Article  CAS  Google Scholar 

  18. R. Bränden and J. Deinum, FEBS Lett., 73, 144 (1977).

    Article  PubMed  Google Scholar 

  19. C.T. Martin, R.H. Morse, R.M. Kanne, H.B. Gray, B.G. Malmström and S.I. Chan, Biochemistry, 20, 5147 (1981).

    Article  PubMed  CAS  Google Scholar 

  20. L. Morpurgo, A. Desideri and G. Rotilio, Biochem. J., 207, 625 (1982).

    PubMed  CAS  Google Scholar 

  21. M.E. Winkler, D.J. Spira, C.D. LuBien, T.J. Thamann and E.I. Solomon, Biochem. Biophys. Res. Com., 107, 727 (1982).

    Article  PubMed  CAS  Google Scholar 

  22. M.D. Allendorf, D.J. Spira and E.I. Solomon, Proc. Natl. Acad. Sci. U.SA., 82, 3063 (1985).

    Article  CAS  Google Scholar 

  23. D.J. Spira-Solomon, M.D. Allendorf and E.I. Solomon, J. Amer. Chem. Soc., 108, 5318 (1986).

    Article  CAS  Google Scholar 

  24. L. Avigliano, A. Desideri, S. Urbanelli, B. Mondovi and A. Marchesini, FEBS Lett., 100, 318 (1979).

    Article  PubMed  CAS  Google Scholar 

  25. A. Merli, G.L. Rossi, M. Bolognesi, G. Gatti, L. Morpurgo and A. Finazzi-Agro, FEBS Lett., 231, 89 (1988).

    Article  CAS  Google Scholar 

  26. J.M. Guss, P.R. Harrowell, M. Murata, V.A. Norris and H.C. Freeman, J. Mol. Biol., 192, 361 (1986).

    Article  PubMed  CAS  Google Scholar 

  27. W.E.B. Shepard, B.F. Anderson, D.H. Lewandowski, G.E. Norris, and E.N. Baker, J. Amer. Chem. Soc., 112, 7817 (1990).

    Article  CAS  Google Scholar 

  28. Nar, H. PhD. thesis, Technische Universität München (1992).

    Google Scholar 

  29. M.J. Schilstra, P.J.M.W. Birker, G.C. Verschoor and J. Reedijk, Inorg. Chem., 21, 2637 (1982).

    Article  CAS  Google Scholar 

  30. T.N. Sorrell and M.R. Malachowski, Inorg. Chem., 22, 1883 (1983).

    Article  CAS  Google Scholar 

  31. A. Marchesini and P.M.H. Kroneck, Eur. J. Biochem., 101, 65 (1979).

    Article  PubMed  CAS  Google Scholar 

  32. L.-E. Andreasson, R. Bränden, B.G. Malmström and T. Vänngard, FEBS Lett., 32, 187 (1973).

    Article  PubMed  CAS  Google Scholar 

  33. L.-E. Andreasson, R. Bränden and B. Reinhammar, Biochim. Biophys. Acta, 438, 370 (1976).

    PubMed  CAS  Google Scholar 

  34. R. Aasa, R. Bränden, J. Deinum, B.G. Malmström, B. Reinhammar and T. Vänngard, FEBS Lett., 61, 115 (1976).

    Article  PubMed  CAS  Google Scholar 

  35. R. Aasa, R. Bränden, J. Deinum, B.G. Malmström, B. Reinhammar and T. Vänngard, Biochem. Biophys. Res. Com., 70, 1204 (1976).

    Article  PubMed  CAS  Google Scholar 

  36. R. Bränden and J. Deinum, Biochim. Biophys. Acta, 524, 297 (1978).

    PubMed  Google Scholar 

  37. J.L. Cole, P.A. Clark and E.I. Solomon, J. Amer. Chem. Soc., 112, 9534 (1990).

    Article  CAS  Google Scholar 

  38. J.L. Cole, D.P. Ballou and E.I. Solomon, J. Amer. Chem. Soc., 113, 8544 (1991).

    Article  CAS  Google Scholar 

  39. P.A. Clark and E.I. Solomon, J. Amer. Chem. Soc., 114, 1108 (1992).

    Article  CAS  Google Scholar 

  40. J.L. Cole, L. Avigliano, L. Morpurgo and E.I. Solomon, J. Amer. Chem. Soc., 113, 9080 (1991).

    Article  CAS  Google Scholar 

  41. L. Casella, M. Gullotti, G. Pallanza, A. Pintar and A. Marchesini, Biochem. J., 251, 441 (1988).

    PubMed  CAS  Google Scholar 

  42. L. Casella, M. Gullotti, A. Pintar, G. Pallanza and A. Marchesini, J. Inorg. Biochem., 37, 105 (1989).

    Article  CAS  Google Scholar 

  43. B.J. Hathaway, Comprehensive Coordination Chemistry, Vol. 5 (1987).

    Google Scholar 

  44. P. O’Neill, E. M. Fielden, A. Finazzi-Agro and L. Avigliano, Biochem. J., 209, 167 (1983).

    PubMed  Google Scholar 

  45. P.M.H. Kroneck, F.A. Armstrong, H. Merkle and A. Marchesini in Advances in Chemistry Series, No. 200. Ascorbic Acid: Chemistry, Metabolism, and Uses. A. Seib and B.M. Tolbert, Eds., (Amer. Chem. Soc., New York, 1982), pp. 223–248.

    Chapter  Google Scholar 

  46. I. Yamazaki and L.H. Piette, Biochim. Biophys. Acta, 50, 62 (1961).

    Article  PubMed  CAS  Google Scholar 

  47. R.A. Marcus and N. Sutin, Biochim. Biophys. Acta, 811, 265 (1985).

    CAS  Google Scholar 

  48. L. Avigliano, G. Rotilio, S. Urbanelli, B. Mondovi and A. Finazzi-Agro, Arch. Biochem. Biophys., 185, 419 (1978).

    Article  PubMed  CAS  Google Scholar 

  49. H.B. Gray and B.G. Malmström, Biochemistry, 28, 7499 (1989).

    Article  PubMed  CAS  Google Scholar 

  50. G. McLendon, Acc. Chem. Res., 21, 160 (1988).

    Article  CAS  Google Scholar 

  51. S.L. Mayo, W.R. Ellis, Jr, R.J. Crutchley and H.B. Gray, Science, 233, 948 (1986).

    Article  PubMed  CAS  Google Scholar 

  52. T.E. Meyer, A. Marchesini, M.A. Cusanovich and G. Tollin, Biochemistry, 30, 4619. (1991).

    Article  PubMed  CAS  Google Scholar 

  53. U.A. Germann, G. Müller, P.E. Hunzicker and K. Lerch, J. Biol. Chem., 263, 885 (1988).

    PubMed  CAS  Google Scholar 

  54. R. Aramayo and W.E. Timberlake, Nucleic Acid Res., 18, 3415 (1990).

    Article  PubMed  CAS  Google Scholar 

  55. M. Saloheimo, M.-L. Niku-Paalova and K.C. Knowles, J. Gen. Microbiol., 137, 1537 (1991).

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1993 Chapman & Hall, Inc.

About this chapter

Cite this chapter

Messerschmidt, A. (1993). Ascorbate Oxidase Structure and Chemistry. In: Karlin, K.D., Tyeklár, Z. (eds) Bioinorganic Chemistry of Copper. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-6875-5_38

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-6875-5_38

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-011-6877-9

  • Online ISBN: 978-94-011-6875-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics