Skip to main content

RNA Hydrolysis by Cu(II) Complexes: Toward Synthetic Ribonucleases and Ribozymes

  • Chapter

Abstract

We wish to develop reagents for the sequence-specific cleavage of RNA by non-oxidative mechanisms. The molecules we have devised may be described as synthetic ribozymes, and comprise a molecular recognition agent (such as single-stranded DNA) and an RNA hydrolysis agent. Their potential applications include antiviral or antifungal therapy, and they were designed as first-generation catalytic antisense DNA drugs for the control of gene expression. We provide a brief review of the principles of the antisense method, a discussion of the importance (for in vivo applications) of hydrolytic cleavage as an alternative to oxidative degradation of nucleic acids, and a discussion of our synthetic and mechanistic efforts toward synthetic ribozymes.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. E. Uhlmann and A. Peyman, Chemical Reviews, 90, 544 (1990).

    Article  Google Scholar 

  2. Oligodeoxynucleotides: Antisense Inhibitors of Gene Expression, J. S. Cohen, ed., (CRC Press, Boca Raton, (1989),

    Google Scholar 

  3. C.A. Stein; J.S. Cohen.Cancer Res., 48, 2659–2668 (1988).

    PubMed  CAS  Google Scholar 

  4. For a review, see P.J. Green et al. Ann. Rev. Biochem., 55, 569 (1986).

    Article  PubMed  CAS  Google Scholar 

  5. S.M. Heywood, Nucleic Acids Res., 14, 6771 (1986).

    Article  PubMed  CAS  Google Scholar 

  6. J.G. Izant and H. Weintraub, Science, 229, 345 (1985).

    Article  PubMed  CAS  Google Scholar 

  7. P.C. Zamecnik and M.L. Stephenson, Proc. Natl. Acad. Sci. USA, 75, 280 (1978);

    Article  PubMed  CAS  Google Scholar 

  8. M.L. Stephenson and P.C. Zamecnik, Proc. Natl. Acad. Sci. USA, 75, 285 (1978).

    Article  PubMed  CAS  Google Scholar 

  9. Representative examples: (a) M. Matsukura, K. Shinozuka, G. Zon, H. Mitsuya, M. Reitz, J.S. Cohen, and S. Broder, Proc. Natl. Acad. Sci. USA, 84, 7706 (1987);

    Article  PubMed  CAS  Google Scholar 

  10. J. Goodchüd et al, Proc Natl. Acad. Sci. USA, 85, 5507 (1988).

    Article  Google Scholar 

  11. “RNA Hydrolysis”, J. K. Bashkin, M. K. Stern, A. S. Modak, patent applied for, 6/90.

    Google Scholar 

  12. “RNA Hydrolysis”, J. K. Bashkin, A. S. Modak, M. K. Stern, patent application filed 11/1/90.

    Google Scholar 

  13. J. Haselhoff, W.L. Gerlach, Nature 334, 585–591 (1988).

    Article  Google Scholar 

  14. T. R. Cech, J. Am. Med. Assoc, 260, 3030–3034 (1988).

    Article  CAS  Google Scholar 

  15. T.R. Cech, Science, 236, 1532–1539 (1987).

    Article  PubMed  CAS  Google Scholar 

  16. S. Altman, Angew. Chem. Int. Ed. Engl., 29, 749–758 (1990).

    Article  Google Scholar 

  17. for a recent overview, see L. Chrisey, J. Rossi, N. Sarver, Antisense Res. and Dev., 1, 57–63 (1991).

    CAS  Google Scholar 

  18. A. C. Jeffries, R.H. Symons, Nucl. Acids Res., 17, 1371–1377 (1989).

    Article  PubMed  CAS  Google Scholar 

  19. A.J. Zaug, J.R. Kent, T.R. Cech, Science, 224, 574–578 (1984).

    Article  PubMed  CAS  Google Scholar 

  20. D.S. Sigman, Acc. Chem. Res., 19, 180–186 (1986).

    Article  CAS  Google Scholar 

  21. C.-H.B. Chen, D.S. Sigman, Proc. Natl. Acad. Sci. USA, 83, 7147–7151 (1986).

    Article  PubMed  CAS  Google Scholar 

  22. C.-H. B. Chen; D.S. Sigman, J. Am.. Chem. Soc. 110, 6570–6572 (1988).

    Article  CAS  Google Scholar 

  23. B.C.F. Chu, L.E. Orgel, Proc. Natl. Acad. Sci. USA, 82, 963–967 (1985).

    Article  PubMed  CAS  Google Scholar 

  24. P.B. Dervan, Science 232, 464–471 (1986).

    Article  PubMed  CAS  Google Scholar 

  25. G.B. Dreyer, P.B. Dervan, Proc. Natl. Acad. Sci. USA, 82, 968–972 (1985).

    Article  PubMed  CAS  Google Scholar 

  26. G.B. Dreyer, P.B. Dervan, Proc. Natl. Acad. Sci. USA, 27, 3635–3638 (1986).

    Google Scholar 

  27. J.K. Barton, Science, 233, 727–734 (1986).

    Article  PubMed  CAS  Google Scholar 

  28. T.D. Tullius, B.A. Dombroski, Proc. Natl. Acad. Sci. USA, 83, 5469–5473 (1986).

    Article  PubMed  CAS  Google Scholar 

  29. X. Chen, S.E. Rokita, C.J. Burrows, J. Am. Chem. Soc. 113, 5884–5886 (1991).

    Article  CAS  Google Scholar 

  30. Bleomycin: Chemical, Biochemical, and Biological Aspects; S.M. Hecht, ed., (Springer-Verlag, New York, 1979),

    Google Scholar 

  31. J.W. Kozarich, L. Worth, Jr., B.L. Frank, D. Christner, D.E. Vanderwall, J. Stubbe, Science, 245, 1396 (1989).

    Article  PubMed  CAS  Google Scholar 

  32. Y. Sugano, A. Kittaka, M. Otsuka, M. Ohno, Y. Sugiura, H. Umezawa, Tet. Let., 27, 3631–3634 (1986).

    Article  Google Scholar 

  33. K. Delany, S.K. Arora, P.K. Mascharak, Inorg. Chem., 27, 705–712 (1988).

    Article  CAS  Google Scholar 

  34. M. K. Stern, J. K. Bashkin, E. D. Sall, J. Am. Chem. Soc., 112, 5357–5359 (1990).

    Article  CAS  Google Scholar 

  35. J. K. Bashkin, J. K. Gard, A. S. Modak, J. Org. Chem., 55, 5125–5132 (1990).

    Article  CAS  Google Scholar 

  36. A. S. Modak, J. K. Gard, M. C. Merriman, K. A. Winkeler, J. K. Bashkin, and M. K. Stern, J. Am. Chem. Soc., 113, 283–291 (1991).

    Article  CAS  Google Scholar 

  37. J. K. Bashkin, R. J. McBeath, A. S. Modak, K. R. Sample, W.B. Wise, J. Org. Chem., 56, 3168–3176 (1991).

    Article  CAS  Google Scholar 

  38. E. Anslyn, R. Breslow, J. Am. Chem. Soc., 111, 5972–5973 (1989).

    Article  CAS  Google Scholar 

  39. E. E. Anslyn, R. Breslow, J. Am. Chem. Soc. 111, 4473–4482 (1989).

    Article  CAS  Google Scholar 

  40. W. Farkas,Biochim. Biophys. Acta, 155, 401–409 (1968).

    PubMed  CAS  Google Scholar 

  41. J.J. Butzow, G. Eichhorn, Biochemistry 10, 2019–2027 (1971).

    Article  PubMed  CAS  Google Scholar 

  42. J.J. Butzow, G. Eichhorn, Nature, 254, 358–369 (1975).

    Article  PubMed  CAS  Google Scholar 

  43. H. Ikenaga, Y. Inoue, Biochemistry, 13, 577–582 (1974).

    Article  PubMed  CAS  Google Scholar 

  44. R.S. Brown, J.C. Dewan, A. Klug, Biochemistry, 24, 4785–4801 (1985).

    Article  PubMed  CAS  Google Scholar 

  45. L.S. Behlen, J.R. Sampson, A.B. Direnzo, O.C. Uhlenbeck, Biochemistry, 29, 2515–2523 (1990).

    Article  PubMed  CAS  Google Scholar 

  46. K. Dimroth, H. Witzel, W. Hulsen, H. Mirbach, Annalen, 620, 94–108 (1959).

    CAS  Google Scholar 

  47. J.M. Harrowfield, D.R. Jones, L.F. Lindoy, A.M. Sargeson, J. Am. Chem. Soc., 102, 7733–7741 (1980).

    Article  CAS  Google Scholar 

  48. G. Rawji, M. Hediger, R.M. Milburn, Inorg. Chim. Acta, 79, 247 (1983).

    Article  Google Scholar 

  49. R.A. Kenley, R.H. Fleming, R.M. Laine, D.S. Tse, J.S. Winterle, Inorg. Chem., 23, 1870–1876 (1984).

    Article  CAS  Google Scholar 

  50. D.R. Jones, L.F. Lindoy, A.M. Sargeson, J. Am. Chem. Soc., 106, 7807–7819 (1984).

    Article  CAS  Google Scholar 

  51. G.H. Rawji, R.M. Milburn, Inorg. Chim. Acta, 150, 227–232 (1988).

    Article  CAS  Google Scholar 

  52. J. Chin, X. Zou, J. Am. Chem. Soc., 110, 223–225 (1988).

    Article  CAS  Google Scholar 

  53. J.R. Morrow, W.C. Trogler, Inorg. Chem., 27, 3387–3394 (1988).

    Article  CAS  Google Scholar 

  54. J.R. Morrow, W.C. Trogler, Inorg. Chem., 28, 2330–2334 (1989).

    Article  CAS  Google Scholar 

  55. J. Chin, M. Banaszczyk, V. Jubian, X. Zou, J. Am. Chem. Soc., 111, 187–190 (1989).

    Google Scholar 

  56. S.H. Gellman, R. Petter, R. Breslow, J. Am. Chem. Soc., 108, 2388–2394 (1986).

    Article  PubMed  CAS  Google Scholar 

  57. K.T. Potts, D.A. Usifer, A. Guadalupe, H.D. Abruna, J. Am. Chem. Soc., 109, 3961–3967 (1987).

    Article  CAS  Google Scholar 

  58. J.K. Bashkin, A.S. Modak, unpublished results

    Google Scholar 

  59. J.K. Bashkin, S.M. Touami, U. Sampath, unpublished results.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1993 Chapman & Hall, Inc.

About this chapter

Cite this chapter

Bashkin, J.K. (1993). RNA Hydrolysis by Cu(II) Complexes: Toward Synthetic Ribonucleases and Ribozymes. In: Karlin, K.D., Tyeklár, Z. (eds) Bioinorganic Chemistry of Copper. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-6875-5_11

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-6875-5_11

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-011-6877-9

  • Online ISBN: 978-94-011-6875-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics