Skip to main content

Mechanisms of Copper Ion Homeostasis in Yeast

  • Chapter
  • 318 Accesses

Abstract

Since the mid 1980’s, the field of metal ion chemistry has rapidly expanded to include the molecular biologists intrigued by the involvement of heavy metals in gene function and regulation. In particular, metals such as copper that are both toxic and essential for life represent an interesting dichotomy to metal ion biologists; much research currently focuses on identifying the cellular factors controlling accumulation, distribution and detoxification of these ions. The bakers yeast S. cerevisiae provides an ideal system in which to conduct these studies. The application of yeast molecular genetics should facilitate the isolation of key genes controlling metal ion homeostasis and should provide the molecular tools for probing structure and function of the encoded proteins.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. C. M. Lin and D.J. Kosman, J. Biol. Chem. 265, 9194 (1990).

    PubMed  CAS  Google Scholar 

  2. R.C. Schmitt, H. Darwish, J. Cheney and M. J. Ettinger, Fed. Pr oc. 45, 2800 (1986).

    Google Scholar 

  3. G.M. Gadd, A. Stewart, C. White and J. Mowll, FEMS Microb. Letts, 24, 231 (1984).

    Article  CAS  Google Scholar 

  4. F. Bronner and J. Yost, Am. J. Physiol. 249, G108 (1985).

    PubMed  CAS  Google Scholar 

  5. S. Herd, F. Camakaris, P. Wookey and D. Danks, J. Nutr. 12, 1370 (1991).

    Google Scholar 

  6. A. Danois, R. Klausner, A. Hinnebush and J. Bairiocanal. Mol. Cell. Biol. 10, 2294 (1990).

    Google Scholar 

  7. D. Hamer, D. Theile and J. Lemontt, Science, 228, 685 (1990).

    Article  Google Scholar 

  8. M. Nakamura and I. Yamazaki, Biochim. Biophys. Acta., 267, 249 (1972).

    Article  PubMed  CAS  Google Scholar 

  9. A. Samuni, C. Chevion, and G. Czaoski, J. Biol. Chem. 256, 249, (1981).

    Google Scholar 

  10. S. Goldstein and G. Czapski. J. Free Radic. Biol. Med. 2, 3, (1986).

    Article  PubMed  CAS  Google Scholar 

  11. K. Yamamoto, and S. Kawanichi, J. Biol. Chem., 264, 15435 (1989).

    PubMed  CAS  Google Scholar 

  12. L. Tkeshelashvili, T. McBride, X. Spence and L. Loeb, J. Biol. Chem. 266, 6401 (1991).

    PubMed  CAS  Google Scholar 

  13. K. Yamamoto and S. Kawanishi, J. Biol. Chem., 266, 1509 (1991).

    PubMed  CAS  Google Scholar 

  14. D. Hamer. Ann. Rev. Biochem. 55, 913 (1986).

    Article  PubMed  CAS  Google Scholar 

  15. D. Theile, Mol. Cell. Biol., 8, 2745 (1988).

    Google Scholar 

  16. F. Galiazzo, A. Schiesser and G. Rotilio. Biochim. Biophys Acta 965, 46 (1988).

    Article  PubMed  CAS  Google Scholar 

  17. M. Greco, D. Hrab, W. Magner and D. Kosman, J. Bacteriol., 172, 317, (1990).

    PubMed  CAS  Google Scholar 

  18. M. Carri, F. Galiazzo, M. Ciriolo and G. Rotilio, FEBS LETT, 2278, 263 (1991).

    Article  Google Scholar 

  19. E. Gralla, D. Thiele, P. Silar, J. Valentine, Proc. Natl. Acad. Sci. USA, 88, 8558 (1991).

    Article  PubMed  CAS  Google Scholar 

  20. G. Cohen, F. Fessl, A. Traczyk, J. Rytka and H. Ruis, Mol. Gen. Genet, 200, 74 (1985).

    Article  PubMed  CAS  Google Scholar 

  21. W. Spevak, F. Fessl, J. Rytka, A. Traczyk, M. Skoneczny and H. Ruis, Mol. Cell. Biol., 3, 1545 (1983).

    PubMed  CAS  Google Scholar 

  22. T. Belazze, A. Wagner, R. Wieser, M. Schanz, G. Adam, A. Hartig and H. Ruis. EMBO J. 10, 585 (1991).

    Google Scholar 

  23. R. Wieser, G. Adam, A. Wagner, C. Schuller G. Marchler, H. Ruis, Z. Krawiec and T. Bilinski, J. Biol. Chem. 266, 12406 (1991).

    PubMed  CAS  Google Scholar 

  24. P. Silar, G. Butler, and D. Thiele. Mol. Cell. Biol, 11, 1232 (1991).

    PubMed  CAS  Google Scholar 

  25. W. Yang, W. Gahl and D. Hamer, Mol. Cell. Biol, 11, 3676 (1991).

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1993 Chapman & Hall, Inc.

About this chapter

Cite this chapter

Culotta, V.C., Lapinskas, P., Liu, X.F. (1993). Mechanisms of Copper Ion Homeostasis in Yeast. In: Karlin, K.D., Tyeklár, Z. (eds) Bioinorganic Chemistry of Copper. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-6875-5_10

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-6875-5_10

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-011-6877-9

  • Online ISBN: 978-94-011-6875-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics