Skip to main content

Experimental studies of deformation mechanisms and microstructures in quartzo-feldspathic rocks

  • Chapter
Deformation Processes in Minerals, Ceramics and Rocks

Part of the book series: The Mineralogical Society Series ((MIBS,volume 1))

Abstract

Experimental rock deformation studies provide two kinds of information. First, they provide information which will help to interpret the preserved micro- and macroscale structures in naturally deformed rocks, in terms of the P and T conditions of deformation, the flow stresses and finite strains, and whether the deformation was brittle or ductile, seismic or aseismic. Second they provide data which can be used in predictive modelling of the thermomechanical evolution of structures on various scales, ranging from single faults and folds to plate boundaries to whole mantle convection. In all cases the usefulness of the experimental studies depends on a demonstration that, despite large differences in strain rate, the same processes have operated in both the experimental and the natural deformations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Allison, I. S. & T. E. LaTour 1977. Brittle deformation of hornblende in a mylonite: a direct geometrical analogue of ductile deformation by translation gliding. Can. J. Earth Sci. 14, 1953–9.

    Google Scholar 

  • Arzi, A. A. 1978. Critical phenomena in the rheology of partially melted rocks. Tectonophysics 44, 173–84.

    Google Scholar 

  • Ashby, M. F. 1972. A first report of deformation-mechanism maps.Acta Metall. 20, 887–97.

    Google Scholar 

  • Atkinson, B. K. 1984. Subcritical crack growth in geological materials. J. Geophys. Res. 89, 4077–114.

    Google Scholar 

  • Aydin, A. & A. M. Johnson 1983. Analysis of faulting in porous sandstones. J. Struct. Geol. 5, 19–35.

    Google Scholar 

  • Baeta, R. D. & K. H. G. Ashbee 1970. Mechanical deformation of quartz, Parts I and II. Phil Mag. 22, 624–35.

    Google Scholar 

  • Barber, D. J. 1970. Thin foils of non-metals made for electron microscopy by sputter-etching. J. Mat. Sci. 5, 1–8.

    Google Scholar 

  • Berthe, D., P. Choukroune & D. Gapais 1979. Orthogneiss, mylonite, and non-coaxial deformation of granites: the example of the South Armorican shear zone. J. Struct. Geol. 1, 31—42.

    Google Scholar 

  • Blenkinsop, T. G. & M. R. Drury 1988. Stress estimates and fault history from quartz microstructures. J. Struct. Geol. 10, 673–84.

    Google Scholar 

  • Borg, I. & H. C. Heard 1970. Experimental deformation of plagioclases. In Experimental and natural rock deformation, P. Paulitsch (ed.), 375–403. New York: Springer.

    Google Scholar 

  • Brodie, K. H. & E. H. Rutter 1985. On the relationship between deformation and metamorphism, with special reference to the behavior of basic rocks. In Advances in Physical Geochemistry 4, A. B. Thompson & D. C. Rubie (eds), 138–79. New York: Springer.

    Google Scholar 

  • Brown, W. L. (ed.) 1983. Feldspars and feldspathoids. NATO ASI Series C137, 541 pp.

    Google Scholar 

  • Carter, N. L., J. M. Christie & D. T. Griggs 1964. Experimental deformation and recrystallization of quartz.J. Geol. 72, 687–733.

    Google Scholar 

  • Carter, N. L., D. A. Anderson, F. D. Hansen & R. L. Kranz 1981. Creep and creep rupture of granitic rocks. In Mechanical behavior of crustal rocks, N. L. Carter et al. (eds). Geophysical Monograph 24, 61–102. Washington DC: Amer. Geophys. Union.

    Google Scholar 

  • Christie, J. M., D. T. Griggs & N. L. Carter 1964. Experimental evidence of basal slip in quartz. J. Geol. 72, 734–56.

    Google Scholar 

  • Cooper, R. L. & D. L. Kohlstedt 1984. Solution-precipitation enhanced diffusional creep of partially molten olivine-basalt aggregates during hot pressing. Tectonophysics 107, 207–33.

    Google Scholar 

  • Dell’Angelo, L. N. & J. Tullis 1982. Textural strain softening in experimentally deformed aplite. Trans Am. Geophys. Union 63, 438.

    Google Scholar 

  • Dell’Angelo, L. N. & J. Tullis 1986. A comparison of quartz c-axis preferred orientations in experimentally deformed aplites and quartzites. J. Struct. Geol. 8, 683–92.

    Google Scholar 

  • Dell’Angelo, L. N. & J. Tullis 1988. Experimental deformation of partially melted granitic aggregates. J. Met. Geol. 6, 495–515.

    Google Scholar 

  • Dell’Angelo, L. N. & J. Tullis 1989. Fabric development in experimentally sheared quartzite. Tectonophysics 169, 1–21.

    Google Scholar 

  • Dell’Angelo, L. N., J. Tullis & R. A. Yund 1987. Transition from dislocation creep to melt- enhanced diffusion creep in fine-grained granitic aggregates. Tectonophysics 139, 325–32.

    Google Scholar 

  • Ernst, G. W. & H. Blatt 1963. Experimental study of quartz overgrowths and synthetic quartzite. J. Geol. 72, 461–9.

    Google Scholar 

  • Etchecopar, A. & G. Vasseur 1987. A 3-D kinematic model of fabric development in polycrystal-line aggregates: comparisons with experimental and natural examples. J. Struct. Geol. 9, 705–18.

    Google Scholar 

  • Evans, J. P. 1988. Deformation mechanisms in granitic rocks at shallow crustal levels. J. Struct. Geol. 10, 437–44.

    Google Scholar 

  • Fredrich, J., B. Evans & T.-F. Wong, 1989. Micromechanics of the brittle to plastic transition in Carrara marble. J. Geophys. Res. 94, 4129–45.

    Google Scholar 

  • Friedman, M. & N. G. Higgs 1981. Calcite fabrics in experimental shear zones. InMechanical behavior of crustal rocks, N. L. Carter et al. (eds). Geophysical Monograph 24, 11–29. Washington DC: Amer. Geophys. Union.

    Google Scholar 

  • Frost, H. J. & M. F. Ashby 1982.Deformation mechanism maps. Oxford: Pergamon.

    Google Scholar 

  • Gandais, M. & C. Willaime 1983. Mechanical properties of feldspars. In Feldspars and feldspathoids, W. L. Brown (ed.), NATO ASI Series C137, 207–46.

    Google Scholar 

  • Gleason, G. & J. Tullis, 1989. C-axis preferred orientations of quartzites deformed and annealed in the alpha and beta quartz fields. Trans Am. Geophys. Union, 70, 458.

    Google Scholar 

  • Goldsmith, J. R. 1987. Al/Si interdiffusion in albite: effect of pressure and the role of hydrogen. Contrib. Mineral. Petrol. 95, 311–21.

    Google Scholar 

  • Goldsmith, J. R. 1988. Enhanced Al/Si diffusion in KAlSi3O8 at high pressures: the effect of hydrogen. J. Geol. 96, 109–24.

    Google Scholar 

  • Green, H. W. & R. S. Borch 1987. The pressure dependence of creep. Acta Metall 35, 1301–5.

    Google Scholar 

  • Green, H. W. & R. S. Borch, 1989. A new molten salt cell for precision stress measurement at high pressure. Europ. J. Mineral. 1, 213–19.

    Google Scholar 

  • Green, H. W., D. T. Griggs & J. M. Christie 1971. Syntectonic and annealing recrystallization of fine-grained quartz aggregates. In Experimental and natural rock deformation, P. Paulitsch (ed.), 272–335. New York: Springer.

    Google Scholar 

  • Griggs, D. T. & J. B. Blacic 1965. Quartz: anomalous weakness of synthetic crystals. Science 147, 292–5.

    Google Scholar 

  • Griggs, D. T., F. J. Turner & H. C. Heard 1960. Deformation of rocks at 500° to 800°C. Geol Soc. Am. Mem. 79, 39–104.

    Google Scholar 

  • Guillope, M. & J.-P. Poirier 1979. Dynamic recrystallization during creep of single crystalline halite: an experimental study. J. Geophys. Res. 84, 5557–67.

    Google Scholar 

  • Hadizadeh, J. & E. H. Rutter 1983. The low temperature brittle-ductile transition in a quartzite and the occurrence of cataclastic flow in nature. Geol. Rund. 72, 493–509.

    Google Scholar 

  • Hadizadeh, J. & J. Tullis 1986. Transition from brittle faulting to ductile cataclastic flow for anorthosite: both P and T are required. Trans Am. Geophys. Union 67, 372–3.

    Google Scholar 

  • Handin, J., D. V. Higgs & J. K. O’Brien 1960. Torsion of Yule marble under confining pressure. Geol Soc. Am. Mem. 79, 245–74.

    Google Scholar 

  • Heard, H. C. 1960. Transition from brittle fracture to ductile flow in Solnhofen limestone as a function of temperature, confining pressure, and interstitial fluid pressure. Geol Soc. Am. Mem. 79, 193–226.

    Google Scholar 

  • Heard, H. C. & N. L. Carter 1968. Experimentally induced ‘natural’ intragranular flow in quartz and quartzite. Am. J. Sci. 266, 1–42.

    Google Scholar 

  • Hickman, S. & B. Evans 1988. Influence of normal stress and contact radius on pressure solution along halite/silica contacts. Trans Am. Geophys. Union 69, 1426.

    Google Scholar 

  • Hirth, J. G. & J. Tullis 1986. Cataclastic flow of dry non-porous quartzite. Trans Am. Geophys. Union 67, 1186.

    Google Scholar 

  • Hirth, J. G. & J. Tullis, in press. The effects of pressure and porosity on the micromechanics of the brittle-ductile transition in quartzite. J. Geophys. Res.

    Google Scholar 

  • Hobbs, B. E. 1985. The hydrolytic weakening effect in quartz. In Point defects in minerals, R. N. Shock (ed.), Geophysical Monograph 31, 151–70. Washington, DC: Amer. Geophys. Union.

    Google Scholar 

  • Hobbs, B. E. 1968. Recrystallization of single crystals of quartz. Tectonophysics 6, 353–401.

    Google Scholar 

  • Jaoul, O., J. Tullis & A. K. Kronenberg 1984. The effect of varying water contents on the creep behavior of Heavitree quartzite. J. Geophys. Res. 89, 4298–312.

    Google Scholar 

  • Jean-Loz, R. & H.-R. Wenk 1988. Convection and anisotropy of the inner core. Geophys. Res. Lett. 15, 72–5.

    Google Scholar 

  • Jessel, M. W. 1988. Simulation of fabric development in recrystallizing aggregates - II. Example model runs. J. Struct. Geol. 10, 779–94.

    Google Scholar 

  • Ji, S. & D. Mainpriee 1986. Transition from power law to Newtonian creep in experimentally deformed dry albite. Trans Am. Geophys. Union 67, 1235.

    Google Scholar 

  • Jordon, P. G. 1987. The deformational behavior of bimineralic limestone-halite aggregates. Tectonophysics 135, 185–97.

    Google Scholar 

  • Karato, S.-I. 1988. Scismic anisotropy: mechanisms and tectonic implications. In Rheology of solids and of the Earth, S.-I. Karato & M. Toriumi (eds). Oxford: Oxford University Press.

    Google Scholar 

  • Karato, S.-I., M. S. Paterson & J. D. FitzGerald 1986. Rheology of synthetic olivine aggregates: influence of grain size and water. J. Geophys. Res. 91, 8151–6.

    Google Scholar 

  • Kern, H. & F. Karl 1969. Eine dreiaxial wirkende Gesteinspresse mit Heizvorrichtung. Berg- bauwissenschaften 16, 90–2.

    Google Scholar 

  • Kerrich, R., R. D. Beckinsdale & J. J. Durham 1977. The transition between deformation regimes dominated by intercrystalline diffusion and introcrystalline creep evaluated by oxygen isotope thermometry. Tectonophysics 38, 241–57.

    Google Scholar 

  • Kirby, S. H. & A. K. Kronenberg 1984. Deformation of clinopyroxenite: evidence for a transition in flow mechanisms and semibrittle behavior. J. Geophys. Res. 89, 3177–92.

    Google Scholar 

  • Kohlstedt, D. L. & P. Hornack 1981. Effect of oxygen partial pressure on the creep of olivine. InAnelasticity in the Earth, F. D. Stacey, M. S. Paterson & A. Nicolas (eds), 101–7. Geodynamics Series 4. Washington, DC: American Geophysical Union.

    Google Scholar 

  • Kohlstedt, D., C. Goetz, W. B. Durham & J. B. Vandersande 1976. A new technique for decorating dislocations in olivine. Science 19, 1045–51.

    Google Scholar 

  • Kronenberg, A. K. & G. L. Shelton 1980. Deformation microstructures in experimentally deformed Maryland diabase. J. Struct. Geol. 2, 341–53.

    Google Scholar 

  • Kronenberg, A. K. & J. Tullis 1984. Flow strengths of quartz aggregates: grain size and pressure effects due to hydrolytic weakening. J. Geophys. Res. 89, 4281–97.

    Google Scholar 

  • Kronenberg, A. K., P. Segall & G. H. Wolf, 1990. Hydrolytic weakening and penetrative deformation within a natural shear zone. In The brittle-ductile transition in rocks, A. Duba, W. Durham, J. Handin & H. Wang (eds), Geophysical Monograph 56, Washington DC: Amer. Geophys. Union.

    Google Scholar 

  • Law, R. D. 1986. Relations between strain and quartz crystallographic fabric in the Roche Maurice quartzites of Plougastel, western Brittany. J. Struct. Geol. 8, 493–516.

    Google Scholar 

  • Lehner, F. 1990. Thermodynamics of rock deformation by pressure solution. This volume 296–333.

    Google Scholar 

  • Liddell, N. A., P. P. Phakey & H.-R. Wenk 1976. The microstructure of some naturally deformed quartzites. In Electron microscopy in mineralogy, H.-R. Wenk (ed.), 419–27. New York: Springer.

    Google Scholar 

  • Lister, G. S. & B. E. Hobbs 1980. The simulation of fabric development during plastic deformation: the effects of deformation history. J. Struct. Geol. 2, 355–70.

    Google Scholar 

  • Lister, G. S. & A. W. Snoke 1984. S-C mylonites. J. Struct. Geol. 6, 617–38.

    Google Scholar 

  • Lister, G. S., M. S. Paterson & B. E. Hobbs 1978. The simulation of fabric development in plastic deformation and its application to quartzite: the model. Tectonophysics 45, 107–58.

    Google Scholar 

  • Luan, F. & M. S. Paterson 1988. Deformation of synthetic quartz aggregates. Trans Am. Geophys. Union 69, 1418.

    Google Scholar 

  • Mainpriee, D. H. 1981.The experimental deformation of quartz polycrystals. PhD thesis, Australian National University, Canberra.

    Google Scholar 

  • Mainpriee, D. H. & M. S. Paterson 1984. Experimental studies of the role of water in the plasticity of quartzites. J. Geophys. Res. 89, 4257–69.

    Google Scholar 

  • Marshall, D. B. & A. C. McLaren 1977. Deformation mechanisms in experimentally deformed plagioclase feldspars. Phys. Chem. Mineral. 1, 351–70.

    Google Scholar 

  • McLaren, A. C., J. D. FitzGerald & J. Gerretsen 1989. Dislocation nucleation and multiplication in synthetic quartz: relevance to water weakening. Phys. Chem. Mineral. 16, 465–82.

    Google Scholar 

  • Means, W. D. 1981. The concept of steady-state foliation. Tectonophysics 78, 179–99.

    Google Scholar 

  • Means, W. D. 1983. Microstructure and micromotion in recrystallization flow of octochloro-propane: a first look. Geol. Rund. 72, 511–28.

    Google Scholar 

  • Mitra, S. 1978. A quantitative study of deformation mechanisms and finite strain in quartzites. Contrib. Mineral. Petrol. 59, 203–26.

    Google Scholar 

  • Ord, A. & B. E. Hobbs 1986. Experimental control of the water-weakening effect in quartz. In Mineral and rock deformation: laboratory studies, B. E. Hobbs & H. C. Heard (eds), 51–72. Am. Geophys. Monogr. 36, Washington, DC: Amer. Geophys. Union.

    Google Scholar 

  • Paterson, M. S. 1978.Experimental rock deformation: the brittle field. New York: Springer.

    Google Scholar 

  • Paterson, M. S. 1987. Problems in the extrapolation of laboratory rheological data. Tectonophysics 133, 33–43.

    Google Scholar 

  • Poirier, J.-P. 1985.Creep of crystals. Cambridge: Cambridge University Press.

    Google Scholar 

  • Poirier, J.-P., C. Sotin & S. Beauchesne 1989. Experimental deformation and data processing. This volume.

    Google Scholar 

  • Poirier, J.-P. & A. Nicolas 1975. Deformation-induced recrystallization due to progressive misorientation of subgrains with special reference to mantle peridotites.J. Geol. 83, 707–20.

    Google Scholar 

  • Poumellec, B. & O. Jaoul 1984. Influence of pO2 and pH2O on the high temperature plasticity of olivine. In Deformation of ceramics II, R. C. Bradt & R. E. Tressler (eds), 281–305. New York: Plenum.

    Google Scholar 

  • Price, G. P. 1985. Preferred orientations in quartzites. In Preferred orientations in deformed metals and rocks: an introduction to modern texture analysis, H.-R. Wenk (ed.), 385–406. New York: Academic Press.

    Google Scholar 

  • Ribbe, P. H. (ed.) 1983. In Feldspar Mineralogy, Reviews in Mineralogy, 2, 2nd edn. Washington DC: Min. Soc. Amer.

    Google Scholar 

  • Rutter, E. 1976. The kinetics of rock deformation by pressure solution.Phil Trans R. Soc. Lond. A 283, 203–19.

    Google Scholar 

  • Rutter, E. H. & S. H. White 1979. The microstructures and rheology of fault gouges produced experimentally under wet and dry conditions at temperatures up to 400°C.Bull. Mineral. 102, 101–9.

    Google Scholar 

  • Schmid, S. M. & M. Casey 1986. Complete fabric analysis of some commonly observed quartz c-axis patterns. Am. Geophys. Union Monogr. 36, 263–86.

    Google Scholar 

  • Schmid, S. M., J. M. Boland & M. S. Paterson 1977. Superplastic flow in fine-grained limestones. Tectonophysics 43, 257–90.

    Google Scholar 

  • Schmid, S. M., R. Panozzo & S. Bauer 1987. Simple shear experiments on calcite rocks: rheology and microfabric. J. Struct. Geol. 9, 747–78.

    Google Scholar 

  • Scifert, K. E. 1969. Strength of Adirondack anorthosite at elevated temperatures and pressures. Qeol. Soc. Am. Bull. 80, 2053–60.

    Google Scholar 

  • Shelton, G. L. & J. Tullis 1981. Experimental flow laws for crustal rocks. Trans Am. Geophys. Union 62 , 396.

    Google Scholar 

  • Shelton, G. L., J. Tullis & R. A. Yund 1979. Pressure dependence of rock strength: implications for hydrolytic weakening. Bull. Mineral. 102, 110–14.

    Google Scholar 

  • Shimada, M. 1986. Mechanism of deformation in a dry porous basalt at high pressures. Tectonophysics 121, 153–73.

    Google Scholar 

  • Simpson, C. 1982. Strain and shape fabric variations associated with ductile shear zones. J. Struct. Geol. 4, 61–72.

    Google Scholar 

  • Simpson, C. 1985. Deformation of granitic rocks across the brittle-ductile transition. J. Struct. Geol. 1, 503–11.

    Google Scholar 

  • Simpson, C. & S. M. Schmid 1983. An evaluation of criteria to deduce the sense of movement in sheared rocks. Geol. Soc. Am. Bull. 94, 1281–8.

    Google Scholar 

  • Snow, E. & R. A. Yund 1987. The effect of ductile deformation on the kinetics and mechanisms of the aragonite/calcite transformation. J. Met. Geol. 5, 141–53.

    Google Scholar 

  • Solomon, S. C., R. M. Richardson & E. A. Bergman 1980. Tectonic stress: models and magnitudes. J. Geophys. Res. 85, 6086–92.

    Google Scholar 

  • Spiers, C. & P. M. T. M. Schutjens 1990. Densification of crystalline aggregates by fluid-phase diffusional creep. This volume 334–53.

    Google Scholar 

  • Stesky, R. M. 1978. Mechanisms of high temperature frictional sliding in Westerly granite. Can. J. Earth Sci. 15, 361–75.

    Google Scholar 

  • Stocker, R. L. & M. F. Ashby 1973. On the rheology of the upper mantle. Rev. Geophys. Space Phys. 11, 391–426.

    Google Scholar 

  • Tapponnier, P. & W. F. Brace 1976. Development of stress-induced microcracks in Westerly granite. Int. J. Rock Mech. Min. Sci. 13, 103–12.

    Google Scholar 

  • Tighe, N. J. & J. M. Christie 1969. Deformation structures in quartz rocks. In Proc. EMSA, 60–61. Baton Rouge: Claitors Publ. Co.

    Google Scholar 

  • Tsenn, M. C. & N. L. Carter 1987. Upper limits of power law creep of rocks. Tectonophysics 136, 1–26.

    Google Scholar 

  • Tullis, T. E. & J. Tullis 1986. Experimental rock deformation techniques. InMineral and rock deformation: laboratory studies, B. E. Hobbs & H. C. Heard (eds), 297–324, Geophysical Monograph 36, Washington, DC. Am. Geophys. Union.

    Google Scholar 

  • Tullis, J. 1983. Deformation of feldspars. In Feldspar mineralogy, 2nd edn, P. H. Ribbe (ed.), Rev. Mineral. 2, 297–322.

    Google Scholar 

  • Tullis, J. & R. A. Yund 1977. Experimental deformation of dry Westerly granite. J. Geophys. Res. 82, 5707–18.

    Google Scholar 

  • Tullis, J. & R. A. Yund 1980. Hydrolytic weakening of experimentally deformed Westerly granite and Hale albite rock. J. Struct. Geol. 2, 439–51.

    Google Scholar 

  • Tullis, J. & R. A. Yund 1985a. Dynamic recrystallization of feldspars: a mechanism for ductile shear zone formation. Geology 13, 238–41.

    Google Scholar 

  • Tullis, J. & R. A. Yund 1985b. Hydrolytic weakening of quartz aggregates: requirement for rapid water penetration. Trans Am. Geophys. Union 66, 1084.

    Google Scholar 

  • Tullis, J. & R. A. Yund 1986. Accommodation mechanism for dislocation creep: comparison of quartz and feldspar. Trans Am. Geophys. Union 66, 366.

    Google Scholar 

  • Tullis, J. & R. A. Yund 1987a. Mechanism of cataclastic flow in anorthosite. Trans Am. Geophys. Union 68, 404.

    Google Scholar 

  • Tullis, J. & R. A. Yund 1987b. Transition from cataclastic flow to dislocation creep of feldspar: mechanisms and microstructures. Geology 15, 606–9.

    Google Scholar 

  • Tullis, J. & R. A. Yund 1988. The effects of hydrogen, oxygen, and water fugacities and confining pressure on the strength of quartz aggregates. Trans Am. Geophys. Union 69, 478.

    Google Scholar 

  • Tullis, J. & R. A. Yund 1988. The effect of hydrogen fugacity and confining pressure on the strength of feldspar aggregates. Geol Soc. Am. Abstr. Prog. 20, A213.

    Google Scholar 

  • Tullis, J., J. M. Christie & D. T. Griggs 1973. Microstructures and preferred orientations of experimentally deformed quartzites. Geol Soc. Am. Bull. 84, 297–314.

    Google Scholar 

  • Tullis, J., L. Dell’Angelo & R. A. Yund, 1990. Ductile shear zones from brittle precursors in felspathic rocks. In The brittle-ductile transition in rocks, A. Duba, W. Durham, J. Handin & H. Wang (eds), Geophysical Monograph 56. Washington, DC: Amer. Geophys. Union.

    Google Scholar 

  • Tullis, J., A. Snoke & V. Todd 1981. Significance and petrogenesis of mylonitic rocks. Geology 10, 227–30.

    Google Scholar 

  • Tullis, T. E. & J. D. Weeks 1986. Constitutive behavior and stability of frictional sliding of granite. Pageophage 124, 383–414.

    Google Scholar 

  • Turner, F. J. & L. E. Weiss 1963.Structural analysis of metamorphic tectonites. New York: McGraw-Hill.

    Google Scholar 

  • Urai, J. L. 1987. Development of microstructure during deformation of earnallite and bischofite in transmitted light. Tectonophysics 135, 251–63.

    Google Scholar 

  • van der Molen, I. & M. S. Paterson 1979. Experimental deformation of partially-melted granite. Contrib. Mineral. Petrol. 70, 299–318.

    Google Scholar 

  • Voll, G. 1976. Recrystallization of quartz, biotite, and feldspars from Erstfeld to the Leventina- nappe, Swiss Alps, and its geological significance. Schweiz. Mineral. Petrogr. Mitt. 56, 641–7.

    Google Scholar 

  • von Kärmän, 1911. Festigheitversuche unter allScitigem Druch. Z. Verein. Deutsch. Ingen. 55, 1749–57.

    Google Scholar 

  • Wenk, H.-R. & U. F. Kocks 1987. The representation of orientation distributions. Metall. Trans. 18A, 1083–92.

    Google Scholar 

  • Wenk, H.-R., G. Canova, A. Molinari & U. F. Kocks 1989. Viscoplastic modeling of texture development in quartzite. J. Geophys. Res. 94, 17895–906.

    Google Scholar 

  • White, S. 1973. Dislocation structures responsible for optical strain features in deformed quartz crystals. J. Mat. Sci. 8, 490–9.

    Google Scholar 

  • White, S. 1976. The effects of strain on the microstructures, fabrics, and deformation mechanisms in quartzites. Phil Trans. R. Soc. Lond. A 283, 69–86.

    Google Scholar 

  • White, S. 1977. Geological significance of recovery and recrystallization processes in quartz. Tectonophysics 39, 143–70.

    Google Scholar 

  • White, J. C. & C. K. Mawer 1986. Extreme ductility of feldspars from a mylonite, Parry Sound, Canada. J. Struct. Geol. 8, 133–43.

    Google Scholar 

  • Wong, T.-F. 1982. Micromechanics of faulting in Westerly granite. Int. J. Rock Mech. Min. Sci. 19, 49–64.

    Google Scholar 

  • Yund, R. A. 1983. Diffusion in feldspars. In Feldspar Mineralogy, Reviews in Mineralogy, 2 2nd edn, P. H. Ribbe (ed.), 203–22. Washington DC: Min. Soc. Amer.

    Google Scholar 

  • Yund, R. A. & E. Snow, 1989. The effects of hydrogen fugacity and confining pressure on the interdiffusion of NaSi-CaAl in peristerites. J. Geophys. Res. 94, 10662–8.

    Google Scholar 

  • Yund, R. A. & J. Tullis 1980. The effect of water, pressure, and strain on Al/Si order-disorder kinetics in feldspar. Contrib. Mineral. Petrol. 72, 297–302.

    Google Scholar 

  • Zeuch, D. H. & H. W. Green 1984. Experimental deformation of a synthetic dunite at high temperature and pressure, part I: mechanical behavior, optical microstructure and deformation mechanism,Tectonophysics 110, 233–62.

    Google Scholar 

Download references

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1990 D. J. Barber, P. G. Meredith & contributors

About this chapter

Cite this chapter

Tullis, J. (1990). Experimental studies of deformation mechanisms and microstructures in quartzo-feldspathic rocks. In: Deformation Processes in Minerals, Ceramics and Rocks. The Mineralogical Society Series, vol 1. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-6827-4_9

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-6827-4_9

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-011-6829-8

  • Online ISBN: 978-94-011-6827-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics