Skip to main content

Compressive brittle fracture and the construction of multi-axial failure maps

  • Chapter

Part of the book series: The Mineralogical Society Series ((MIBS,volume 1))

Abstract

Cracks, holes, and inclusions in an elastic solid can interact with a compressive stress field in a way which causes new cracks to grow from them. If these cracks extend to the sample surface, or if they interact with each other so that they grow in an unstable manner, then a macroscopic failure may follow. The initiation and growth of cracks from pores has been considered by Sammis & Ashby (1986): that from small angled cracks is analysed by Nemat-Nasser & Horii (1982), Cooksley (1984), and Ashby & Hallam (1986). In this chapter we consider the growth of cracks in compressive stress states and how they interact to cause a macroscopic failure.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Akroyd, T. N. W. 1961. Concrete under triaxial stress. Concrete Res. 13, 111–18.

    Google Scholar 

  • Ashby, M. F. & S. D. Hallam 1986. The failure of brittle solids containing small cracks under compressive stress states. Acta Metall. 34, 497–510.

    Article  Google Scholar 

  • Atkinson, B. K. & P. G. Meredith 1987. The theory of subcritical crack growth with application to minerals and rocks. In Fracture mechanics of rock, B. K. Atkinson (ed.) 111–66. London: Academic Press.

    Google Scholar 

  • Coffin, L. F., Jr 1950. The flow and fracture of a brittle material. J. Appl. Mech. Sept., 17, 233–48.

    Google Scholar 

  • Cooksley, S. D. 1984. Yield and fracture surfaces of brittle solids under multi-axial loading. PhD thesis. Engineering Department, University of Cambridge.

    Google Scholar 

  • Costin, L. S. 1983. A microcrack model for the deformation and failure of brittle rock. J. Geophys. Res., 88, 9485–92.

    Article  Google Scholar 

  • Costin, L. S. 1985. Damage mechanics in the post-failure regime. Mech. Mat., 4, 149–60.

    Article  Google Scholar 

  • Coulomb, C. A. 1773. Sur une application des règles de maximis et minimis à quelques problèmes de statique relatifs à l’architecture. Acad. Roy. des Sciences Mémoires de Math, et de Physique par Divers Savants 7, 343–82.

    Google Scholar 

  • Crossland, B. & W. H. Dearden 1958. Plastic flow and fracture of a “brittle” material (grey cast iron) with particular reference to the effect of fluid pressure. Proc. Instn Mech. Engrs 172, 805–20.

    Article  Google Scholar 

  • Edmund, J. M. & M. S. Paterson 1972. Volume changes during the deformation of rocks at high pressures. Int. J. Rock Mech. Min. Sci. 9, 161–82.

    Article  Google Scholar 

  • Franklin, J. A. 1971. Triaxial strength of rock materials. Rock Mech. 3, 86–98.

    Article  Google Scholar 

  • Griffiths, A. A. 1924. Theory of rupture. In Proc. 1st Int. Conf. Appl. Mech., Delft: Waltman, 55–63.

    Google Scholar 

  • Gueguen, Y., T. Reuschlé and M. Darot 1989. Single-crack behaviour and crack statistics. This volume, 48–71.

    Google Scholar 

  • Hallam, S. D. & J. P. Nadreau 1987. Failure maps for ice. In Proc. 9th Int. Conf. Port Ocean Engng under Arctic Conditions, Fairbanks, Vol III, 45–56.

    Google Scholar 

  • Handin, H. 1953. An application of high pressure in geophysics; experimental rock deformation. Trans Am. Soc. Mech. Engrs 75, 315–24.

    Google Scholar 

  • Hobbs, D. W. 1970. Strength and deformation properties of plain concrete subject to combined stress, part 1: strength results obtained on one concrete. Technical Report 42.451. Cement and Concrete Association.

    Google Scholar 

  • Hobbs, D. W. 1974. Strength and deformation properties of plain concrete subject to combined stress, part 3: results obtained on a range of flint gravel aggregate concretes. Technical Report 42.497. Cement and Concrete Association.

    Google Scholar 

  • Hoek, E. & L. T. Bieniawski 1965. Brittle fracture propagation in rock under compression. Int. J. Frac. Mech. 1, 135–55.

    Google Scholar 

  • Jones, S. J. 1982. The confined compressive strength of polycrystalline ice.J. Glaciol. 28, 171–7.

    Google Scholar 

  • Kobayashi, S. 1971. Initiation and propagation of brittle fracture in rock-like materials under compression. J. Soc. Mat. Sci. 20, 164–73.

    Article  Google Scholar 

  • Kobayashi, S. & W. Koyangi 1972. Fracture criteria of cement paste, mortar and concrete subjected to multi-axial compressive stresses. RILEM Int. Symp., Cannes, October, 131–48.

    Google Scholar 

  • Marshall, G. P. & J. G. Williams 1973. The correlation of fracture data for PMMA. J. Mat. Sci. 8, 138–40.

    Article  Google Scholar 

  • McClintock, F. A. & J. B. Walsh 1962. Friction on Griffith’s cracks in rocks under pressure. In Proc. Fourth US Nat. Congr. Appl. Mech. II, New York, 1015–21.

    Google Scholar 

  • Meredith, P. G. 1989. Fracture and failure of polycrystals: an overview. This volume, 5–47.

    Google Scholar 

  • Mills, L. L. & R. M. Zimmerman 1970. Compressive strength of plain concrete under multi-axial loading conditions. J. Am. Concrete Inst. Title 67–47, 802–7.

    Google Scholar 

  • Murrell, S. A. F. 1963. A criterion for brittle fracture of rocks and concrete under triaxial stress, and the effect of pore pressure on the criterion. In Proc. Fifth Symp. Rock Mech. 563–77. New York: Pergamon.

    Google Scholar 

  • Murrell, S. A. F. 1965. The effect of triaxial stress systems on the strength of rocks at atmospheric temperatures. Geophys. J. R. Astron. Soc. 10, 231–81.

    Article  Google Scholar 

  • Murrell, S. A. F. and P. J. Digby 1970a. The theory of brittle fracture initiation under triaxial stress conditions - I. Geophys. J. R. Astron. Soc. 19, 309–34.

    Article  Google Scholar 

  • Murrell, S. A. F. & P. J. Digby 1970b. The theory of brittle fracture initiation under triaxial stress conditions - II. Geophys. J. R. Astron. Soc. 19, 499–512.

    Article  Google Scholar 

  • Nemat-Nasser, S. & H. Horii 1982. Compression induced non planar crack extension with application to splitting, exfoliation and rockburst. J. Geophys. Res. 87, 6805–21.

    Article  Google Scholar 

  • Newman, K. & J. B. Newman 1973. Design criteria for concrete under combined states of stress. In Criteria of concrete strength, Report 1, CIRIA contract, Imperial College, London.

    Google Scholar 

  • Paterson, M. S. 1978. Experimental rock deformation - the brittle field. Berlin: Springer.

    Google Scholar 

  • Pugh, H. L. L. D. & D. Green 1964. The effect of hydrostatic pressure on the plastic flow of metals. Proc. Inst. Mech. Engrs 179, 415–38.

    Article  Google Scholar 

  • Richart, F. E., A. Brandtzaeg & R. L. Brown 1928. A study of the failure of concrete under combined stress.Bull. Univ. III. Engng Expt Stat. 185, 104.

    Google Scholar 

  • Sammis, C. G. & M. F. Ashby 1986. The failure of porous solids under compressive stress states. Acta Metall. 34, 511.

    Article  Google Scholar 

  • Steif, P. 1984. Crack extension under compressive loading. Engng Fract. Mech. 20, 463.

    Article  Google Scholar 

  • von Karman, Th. 1911. Festigkeitsversuche unter allScitgim druck Z. Ver. dt. Ing. 55, 1749—57.

    Google Scholar 

  • Wallner, M., C. Caninenburg & H. Gonther 1979. Ermittlung zeit- und temperaturabhangiger mechanischer Kennwerte von Salzgesteinen. In Proc. 4th Int. Cong, on Rock Mechanics, Montreux, 1, 313–18.

    Google Scholar 

  • Williams, M. L. 1957. On the stress distribution at the base of a stationary crack. J. Appl. Mech. Trans 24, 109–14.

    Google Scholar 

Download references

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1990 D. J. Barber, P. G. Meredith & contributors

About this chapter

Cite this chapter

Hallam, S.D., Ashby, M.F. (1990). Compressive brittle fracture and the construction of multi-axial failure maps. In: Deformation Processes in Minerals, Ceramics and Rocks. The Mineralogical Society Series, vol 1. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-6827-4_5

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-6827-4_5

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-011-6829-8

  • Online ISBN: 978-94-011-6827-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics