Skip to main content

Dynamic recrystallization and grain size

  • Chapter

Part of the book series: The Mineralogical Society Series ((MIBS,volume 1))

Abstract

The idea that information about the stress history of a geological sample can be extracted from measurements made of the microstructure in the laboratory is attractive. While not attempting to be a review of palaeopiezometers, this chapter will present evidence for a ‘universal relation’ between deformation stress and the steady-state recrystallized grain size resulting from stress-induced boundary migration. This law is, of course, derived from measurements from laboratory experiments. Any application to naturally deformed rocks and minerals should only be carried out if all possible sources of confusion and error are fully understood. In particular, problems could arise from the effects of stress changing with time, and from subsequent deformation in other stress and temperature régimes leading to static recrystallization. More lengthy discussions of these problems are presented elsewhere (Mercier et al. 1977, Poirier 1985).

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Bailey J. E. & P. B. Hirsch 1962. The recrystallization process in some polycrystalline metals. Proc. R. S. Lond. A 267, 11–30.

    Article  Google Scholar 

  • Barber, D. J. 1990. Regimes of plastic deformation - processes and microstructures; an overview. This volume, 138–78.

    Google Scholar 

  • Barrett, C. R., W. D. Nix & O. D. Sherby 1966. The influence of strain and grain size on the creep substructure of Fe-3Si. Trans ASM 59, 3–15.

    Google Scholar 

  • Birch, F. 1966. Compressibility: elastic constants. In Handbook of the physical constants, S. P. Clark, Jr. (ed.), 97–174. Geological Society of America, Memoir 97.

    Google Scholar 

  • Blaz, L., T. Sakai & J. J. Jonas 1983. Effect of initial grain size on dynamic recrystallization of copper.Metal Sci. 17, 609–16.

    Article  Google Scholar 

  • Cox, S. F., M. A. Etheridge & B. E. Hobbs, 1981. The experimental ductile deformation of polycrystalline and single crystal pyrite. Econ. Geol. 76, 2105–17.

    Article  Google Scholar 

  • Cropper, D. R. & J. A. Pask 1973. Creep of lithium fluoride single crystals at elevated temperatures. Phil Mag. 27, 1105–24.

    Article  Google Scholar 

  • Derby, B. & M. F. Ashby 1984. Power-laws and the A-n correlation in creep. Scripta Metall. 18, 1079–84.

    Article  Google Scholar 

  • Derby, B. & M. F. Ashby 1987. On dynamic recrystallization. Scripta Metall. 21, 832–7.

    Google Scholar 

  • Drury, M. R., F. J. Humphreys & S. H. White 1985. Large strain deformation studies using polycrystalline magnesium as a rock analogue, part II: dynamic recrystallization mechanisms at high temperatures. Phys. Earth Planet. Inter. 40, 208–22.

    Article  Google Scholar 

  • Frost, H. J. & M. F. Ashby 1982.Deformation-mechanism maps. Oxford: Pergamon.

    Google Scholar 

  • Glover, C. & C. M. Sellars 1973. Recovery and recrystallization during high temperature deformation of a-iron. Metall. Trans 4, 765–75.

    Article  Google Scholar 

  • Goldberg, A. 1956. Influence of prior cold work on the creep resistance and microstructure of a 0.05% carbon steel. J. Iron Steel Inst. 204, 268–77.

    Google Scholar 

  • Guillope, M. & J.-P. Poirier 1979. Dynamic recrystallization during creep of single crystal halite: an experimental study. J. Geophys. Res. 84, 5557–67.

    Article  Google Scholar 

  • Hiither, W. & B. Reppich 1973. Dislocation structure during creep of MgO single crystals.Phil Mag. 28, 363–71.

    Article  Google Scholar 

  • Karato, S., M. Toriumi & T. Fugii 1980. Dynamic recrystallization of olivine single crystals during high temperature creep.Geophys. Res. Lett. 7, 649–52.

    Article  Google Scholar 

  • McQueen, H. J. & J. E. Hockett 1970. Microstructures of aluminium compressed at various rates and temperatures. Metall. Trans. 1, 2997–3004.

    Google Scholar 

  • Means, W. D. 1983. Microstructure and micromotion in recrystallization flow of octachloropropane: a first look. Geol. Rund. 72, 511–28.

    Article  Google Scholar 

  • Mercier, J. C. C., D. A. Anderson & N. L. Carter 1977. Stress in the lithosphere: inference from the steady state flow of rocks. Pure Appl. Geophys. 115, 199–226.

    Article  Google Scholar 

  • Miller, A. K. & O. D. Sherby 1976. On sub-grain strengthening at high temperatures. Scripta Metall. 10, 311–17.

    Article  Google Scholar 

  • Poirier, J.-P. 1985.Creep of crystals. Cambridge: Cambridge University Press.

    Book  Google Scholar 

  • Richardson, G. J., C. M. Sellars & W. J. McTegart 1966. Recrystallization during creep of nickel. Acta Metall. 14, 1225–36.

    Article  Google Scholar 

  • Robie, R. A., P. M. Bethke, M. S. Toulmin and J. L. Edwards 1966. X-ray crystallographic data, densities and molar volumes of minerals. In Handbook of the physical constants, S. P. Clark, Jr (ed.) 27–74. Geological Society of America, Memoir 97.

    Google Scholar 

  • Ross, J. V., H. G. Ave Lallemant & N. L. Carter 1980. Stress dependence of recrystallized grain and subgrain size in olivine. Tectonophysics 70, 39–61.

    Article  Google Scholar 

  • Sah, J. P., G. J. Richardson & C. M. Sellars 1974. Grain size effects during dynamic recrystallization of nickel. Metal Sci. 8, 325–31.

    Google Scholar 

  • Sandstrom, R. & R. Lagneborg 1975. A model for hot working occurring by recrystallization.Acta Metall. 23, 387–98.

    Article  Google Scholar 

  • Schmid, S. M., M. S. Paterson & J. N. Boland 1980. High temperature flow and dynamic recrystallization in Carrara marble. Tectonophysics 65, 245–80.

    Article  Google Scholar 

  • Servi, I. S. & N. J. Grant 1951. Structure of aluminium deformed in creep at elevated temperatures. Trans Am. Inst. Mech. Engrs 191, 917–22.

    Google Scholar 

  • Steinneman, Von S. 1958. Experimentelle Untersuchungen zur Plastizitat von Eis. Beitrage zur Geologie der Schweiz, Hydrologie no. 10, 1–71.

    Google Scholar 

  • Streb, G. & B. Reppich 1973. Steady state deformation and dislocation structure of pure and Mg-doped LiF single crystals. Physica Status Solidi (a) 16, 493–505.

    Article  Google Scholar 

  • Takeuchi, S. & A. S. Argon 1976. Steady-state creep of single phase crystalline matter at high temperatures. J. Mat. Sci. 11, 1547–55.

    Article  Google Scholar 

  • Tungatt, P. D. & F. J. Humphreys 1984. The plastic deformation and dynamic recrystallization of polycrystalline sodium nitrate. Acta Metall. 32, 1625–35.

    Article  Google Scholar 

  • Twiss, R. J. 1977. Theory and applicability of a recrystallized grain size palaeopiezometer. Pure Appl. Geophys. 115, 227–44.

    Article  Google Scholar 

  • Urai, J. L., F. J. Humphreys & S. E. Burrows 1980.In-situ studies of the deformation and dynamic recrystallization of rhombohedral camphor. J. Mat. Sci. 15, 1231–40.

    Article  Google Scholar 

  • White, S. H. 1973. Syntectonic recrystallization and texture development in quartz. Nature 244, 267–8.

    Article  Google Scholar 

Download references

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1990 D. J. Barber, P. G. Meredith & contributors

About this chapter

Cite this chapter

Derby, B. (1990). Dynamic recrystallization and grain size. In: Deformation Processes in Minerals, Ceramics and Rocks. The Mineralogical Society Series, vol 1. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-6827-4_14

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-6827-4_14

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-011-6829-8

  • Online ISBN: 978-94-011-6827-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics