Skip to main content

Thermodynamics of rock deformation by pressure solution

  • Chapter

Part of the book series: The Mineralogical Society Series ((MIBS,volume 1))

Abstract

Geologists are indebted to Sorby (1863) for the recognition of the fact that rock deformation in the presence of water is often accomplished by processes in which ‘mechanical force is resolved into chemical action’. Sorby later coined the term ‘pressure solution’ in ascribing phenomena such as the pitting of pebbles (Mosher 1981) to stress-enhanced solubility, with which he was familiar from contemporary work in physical chemistry (Durney 1978). In recent work on deformation mechanisms, the terms Solution precipitation creep’ and ‘solution transfer’ or ‘transport creep’ have become customary, the former being more familiar from the metallurgical literature. In this chapter the term ‘pressure solution’ will be used to examine a principal mechanism of ductile rock deformation in the upper crust, which operates under diagenetic and low metamorphic grade conditions up to 200–400°C, depending upon grain size and mineralogy (Weyl 1959, Durney 1972, Elliott 1973, Rutter 1983).

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Alvarez, W., T. Engelder & W. Lowrie 1976. Formation of spaced cleavage and folds in brittle limestone by dissolution. Geology 4, 698–701.

    Article  Google Scholar 

  • Batchelor, G. K. 1970. The stress system in a suspension of force-free particles. J. Fluid Mech. 41, 543–70.

    Article  Google Scholar 

  • Bathurst, R. C. G. 1958. Diagenetic fabrics in some British Dinantian limestones. Liverpool Manchester Geol. J. 2, 11–36.

    Google Scholar 

  • Beran, M. J. 1968.Statistical continuum theories. New York: Wiley.

    Google Scholar 

  • Biot, M. A. 1972. Theory of finite deformations of porous solids.Ind. Univ. Math. J. 21, 597–620.

    Article  Google Scholar 

  • Biot, M. A. 1973. Nonlinear and semilinear rheology of porous solids. J. Geophys. Res. 78, 4924–37.

    Article  Google Scholar 

  • Bosworth, W. 1981. Strain-induced partial dissolution of halite. Tectonophysics 78, 509–25.

    Article  Google Scholar 

  • Brenner, H. 1970. Rheology of two-phase systems. Ann. Rev. Fluid Mech. 2, 137–76.

    Article  Google Scholar 

  • Buxton, T. M. & D. F. Sibley 1981. Pressure solution features in a shallow buried limestone.J. Sediment. Petrol. 51, 19–26.

    Google Scholar 

  • Chadwick, P. 1976. Continuum mechanics. New York: Wiley.

    Google Scholar 

  • Coble, R. L. 1963. A model for boundary diffusion controlled creep in polycrystalline materials. J. Appi. Phys. 34, 1679–82.

    Article  Google Scholar 

  • De Boer, R. B., P. J. C. Nagtegaal & E. M. Duyvis 1977. Pressure solution experiments on quartz sand.Geochim. Cosmochim. Acta 41, 257–64.

    Article  Google Scholar 

  • De Groot, S. R. & P. Mazur 1962.Non-equilibrium thermodynamics. Amsterdam: North Holland.

    Google Scholar 

  • Denbigh, K. 1971.The principles of chemical equilibrium, 3rd edition. Cambridge: Cambridge University Press.

    Google Scholar 

  • Dunnington, H. V. 1967. Aspects of diagenesis and shape change in stylolitic limestone reservoirs. In Proceedings Seventh World Petroleum Congress Mexico, Vol. 2, 339–458.

    Google Scholar 

  • Durney, D. W. 1972. Solution-transfer, an important geological deformation mechanism. Nature 237, 315–17.

    Article  Google Scholar 

  • Durney, D. W. 1978. Early theories and hypotheses on pressure-solution-redeposition. Geology 6, 369–72.

    Article  Google Scholar 

  • Elliott, D. 1973. Diffusion flow laws in metamorphic rocks. Geol Soc. Am. Bull. 84, 2645–64.

    Article  Google Scholar 

  • Gibbs, J. W. 1906. On the equilibrium of heterogeneous substances. In The scientific papers of J. Willard Gibbs, Vol. 1, 55–353, Toronto: Longman (New York; Dover, 1961).

    Google Scholar 

  • Gratier, J. P. & R. Guiget 1986. Experimental pressure solution on quartz grains; the crucial effect of the nature of the fluid. J. Struct. Geol. 8, 845–56.

    Article  Google Scholar 

  • Green, H. W. 1984. ’Pressure solution’ creep: some causes and mechanisms. J. Geophys. Res. 89, 4313–18.

    Article  Google Scholar 

  • Heidug, W. 1985.A thermodynamic theory of fluid infiltrated porous media undergoing large deformations and changes of phase. PhD thesis, Division of Engineering, Brown University.

    Google Scholar 

  • Houseknecht, D. W. 1984. Influence of grain size and temperature on intergranular pressure solution, quartz cementation, and porosity in a quartzose sandstone. J. Sediment. Petrol. 54, 348–61.

    Google Scholar 

  • Houseknecht, D. W. 1988. Intergranular pressure solution in four Quartzose sandstones. J. Sediment. Petrol. 58, 228–46.

    Google Scholar 

  • Hill, R. 1972. On constitutive macro-variables for heterogeneous solids at finite strain. Proc. R. Soc. Lond. A 326, 131–47.

    Article  Google Scholar 

  • Kamb, W. B. 1961. The thermodynamic theory of non-hydrostatically stressed solids. J. Geophys. Res. 66, 259–71.

    Article  Google Scholar 

  • Kestin, J. & J. R. Rice 1970. Paradoxes in the application of thermodynamics to strained solids. In A critical review of thermodynamics, E. B. Stuart, B. Gal-or & A. J. Brainard (eds), 275–98. Baltimore, Maryland: Mono Book Corp.

    Google Scholar 

  • Lehner, F. K. 1979. A derivation of the field equations for slow viscous flow through a porous medium.Indust. Engng Chem. Fundament. 18, 41–5.

    Article  Google Scholar 

  • Lehner, F. K. & J. Bataille 1984. Non-equilibrium thermodynamics of pressure solution. Pure Appi. Geophys. 122, 53–85.

    Article  Google Scholar 

  • Meixner, J. 1960. Relaxationserscheinungen und ihre thermodynamische Behandlung. Ned. T. Natuurk. 26, 259–73.

    Google Scholar 

  • Mosher, S. 1981. Pressure solution deformation of the purgatory conglomerate from Rhode Island. J. Geol. 89, 37–55.

    Article  Google Scholar 

  • Mullins, W. W. & R. F. Sekerka 1985. On the thermodynamics of crystalline solids. J. Chem. Phys. 82, 5192–202.

    Article  Google Scholar 

  • Paterson, M. S. 1973. Nonhydrostative thermodynamics and its geologic applications. Rev. Geophys. Space Phys. 11, 355–89.

    Article  Google Scholar 

  • Pharr, G. M. & M. F. Ashby 1983. On creep enhanced by a liquid phase.Acta Metall. 31, 129–38.

    Article  Google Scholar 

  • Raj, R. & M. F. Ashby 1971. On grain boundary sliding and diffusional creep, Metall. Trans. 2, 1113–27.

    Article  Google Scholar 

  • Raj, R. 1982. Creep in polycrystalline aggregates by matter transport through a liquid phase. J. Geophys. Res. 87(B6), 4731–9.

    Article  Google Scholar 

  • Rice, J. R. 1971. Inelastic constitutive relations for solids: an internal variable theory and its application to metal plasticity. J. Mech. Phys. Solids 19, 433–55.

    Article  Google Scholar 

  • Rice, J. R. 1975. Continuum mechanics and thermodynamics of plasticity in relation to micro- scale deformation mechanisms. In Constitutive equations in plasticity, A. S. Argon (ed.), 23–75. Cambridge, Mass.: MIT Press.

    Google Scholar 

  • Rice, J. R. 1977. Pore pressure effects in inelastic constitutive formulations for fissured rock masses. In Advances in civil engineering through engineering mechanics, 360–3. New York: American Society of Civil Engineers.

    Google Scholar 

  • Robin, P. Y. F. 1978. Pressure solution at grain-to-grain contacts. Geochim. Cosmochim. Acta 42, 1383–9.

    Article  Google Scholar 

  • Rutter, E. H. 1976. The kinetics of rock deformation by pressure solution.Phil Trans R. Soc. Lond. A 283, 203–19.

    Article  Google Scholar 

  • Rutter, E. H. 1983. Pressure solution in nature, theory and experiment. J. Geol. Soc. Lond. 140, 725–40.

    Article  Google Scholar 

  • Slattery, J. C. 1972.Momentum energy and mass transfer in continua. New York: McGraw-Hill.

    Google Scholar 

  • Sorby, H. C. 1863. On the direct correlation of mechanical and chemical forces. Proc. Roy. Soc. Lond. 12, 538–50.

    Google Scholar 

  • Spiers, C. J. & P. M. T. M. Schutjens 1990. Densification of crystalline aggregates by fluid-phase diffusional creep. This volume, 334–531.

    Google Scholar 

  • Stockdale, P. B. 1922. Stylolites: their nature and origin. Indiana Univ. Stud. 9, 1–97.

    Google Scholar 

  • Tada, R. & R. Siever 1986. Experimental knife-edge pressure solution of halite.Geochim. Cosmochim. Acta 50, 29–36.

    Article  Google Scholar 

  • Urai, J. L. 1983.Deformation of wet salt rocks. PhD thesis, Inst. Earth. Sci., University of Utrecht.

    Google Scholar 

  • Urai, J. L., W. D. Means & G. S. Lister 1986. Dynamic recrystallization of minerals. In Mineral and rock deformation: laboratory studies, B. E. Hobbs & H. C. Heard (eds), 161–99. Geophys. Monogr. 36, Washington, DC.: American Geophysical Union.

    Chapter  Google Scholar 

  • Waldschmidt, W. A. 1941. Cementing materials in sandstones and their probable influence on migration and accumulation of oil and gas. AAPG Bull. 25, 1839–79.

    Google Scholar 

  • Wanless, H. R. 1984. Styles of pressure dissolution. In Stylo lit es and associated phenomena - relevance to hydrocarbon reservoirs, 81–105. Special Publication of Abu Dhabi National Reservoir Research Foundation (ADREF), Abu Dhabi.

    Google Scholar 

  • Weyl, P. K. 1959. Pressure solution and the force of crystallisation - a phenomenological theory. J. Geophys. Res. 64, 2001–25.

    Article  Google Scholar 

  • White, J. C. & S. H. White 1981. On the structure of grain boundaries in tectonites.Tectono- physics 78, 613–28.

    Article  Google Scholar 

  • Wilson, T. V. & D. F. Sibley 1978. Pressure solution and porosity reduction in shallow buried quartz arenite. AAPG Bull. 62, 2329–34.

    Google Scholar 

Download references

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1990 D. J. Barber, P. G. Meredith & contributors

About this chapter

Cite this chapter

Lehner, F.K. (1990). Thermodynamics of rock deformation by pressure solution. In: Deformation Processes in Minerals, Ceramics and Rocks. The Mineralogical Society Series, vol 1. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-6827-4_12

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-6827-4_12

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-011-6829-8

  • Online ISBN: 978-94-011-6827-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics