Skip to main content

Molecular genetics approach to lipoprotein metabolism disorders

  • Chapter
HDL Deficiency and Atherosclerosis

Part of the book series: Developments in Cardiovascular Medicine ((DICM,volume 174))

  • 38 Accesses

Abstract

In past decades epidemiological studies have identified several risk factors for early-onset coronary artery disease (CAD1–3). Among these factors disorders of lipoprotein metabolism have a leading role. The PROspective CArdiovascular Minister (PROCAM) study, carried out in the northwest of Germany, has demonstrated that among all single- parameter biochemical markers the concentration of plasma lipids has the highest predictive value.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 16.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Miller NE, Forde OH, Thelle DS, Mjos OD. The Tromso heart-study. High density lipoprotein and coronary heart-disease: a prospective case-control study. Lancet. 1977; 965–68.

    Google Scholar 

  2. Castellu WP, Garrison RJ, Wilson PWF, Abbott TD, Kalousdian S, Kannel WB. Incidence of coronary heart disease and lipoprotein cholesterol levels. The Framingham Study. JAMA. 1986; 256: 2835–8.

    Article  Google Scholar 

  3. Assmann G, Schulte H. Relation of high-density lipoprotein cholesterol and triglycerides to incidence of atherosclerotic coronary artery disease (the PROCAM experience). Am J Cardiol. 1992; 70: 733–7.

    Article  PubMed  CAS  Google Scholar 

  4. Sing CF, Moll PP. Genetics of atherosclerosis. Annu Rev Genet. 1990; 24: 171–87.

    Article  PubMed  CAS  Google Scholar 

  5. Brown MS, Goldstein JL. The hyperlipoproteinemias and other disorders of lipid metabolism. In: Isselbacher KJ, Adams RD, Braunwald E, Petersdorf RG, Wilson JD, editors. Harrison’s principles of internal medicine, 12th ed. New York: McGraw-Hill; 1991.

    Google Scholar 

  6. Rust S, Funke H, Assmann G. Analysis of pooled samples from nearly 10000 individuals, with mutagenically separated PCR (MS-PCR) shows a significant overrepresentation of familial defective apoB-100 in coronary artery disease patients. Circulation, Suppl. 1992; 86: 420.

    Google Scholar 

  7. Hobbs HH, Brown MS, Goldstein JL. Molecular genetics of the LDL receptor gene in familial hypercholesterolemia. Hum Mutation. 1992; 1: 445–66.

    Article  CAS  Google Scholar 

  8. Innerarity TL, Mahley RW, Weisgraber KH, et al. Familial defective apolipoprotein B-100; a mutation of apolipoprotein B that causes hypercholesterolemia. J Lipid Res. 1990; 31: 1337–49.

    PubMed  CAS  Google Scholar 

  9. Pullinger CR, Hennessy LK, Chatterton JE, et al. Familial ligand-defective apolipoprotein B: identification of a new mutation that decreases LDL receptor binding affinity. J Clin Invest. 1995; 95: 1225–34.

    Article  PubMed  CAS  Google Scholar 

  10. Ludwig EH, Blackhart BD, Pierotti VR, et al. DNA sequence of the human apolipoprotein B gene. DNA. 1987; 6: 363–72.

    Article  PubMed  CAS  Google Scholar 

  11. Mullis K, Faloona F, Scharf S, Saiki R, Horn G, Erlich H. Specific enzymatic amplification of DNA in vitro: the polymerase chain reaction. Cold Spring Harbor Symp Quant Biol. 1986; 51: 263–73.

    Article  PubMed  CAS  Google Scholar 

  12. Newton CR, Graham A, Heptinstall LE, et al. Analysis of any point mutation in DNA. The amplification refractory system (ARMS). Nucl Acids Res. 1989; 17: 2503–16.

    Article  PubMed  CAS  Google Scholar 

  13. Rust S, Funke H, Assmann G. Mutagenically separated PCR (MS-PCR): a highly specific one step procedure for easy mutation detection. Nucl Acids Res. 1993; 21: 3623–9.

    Article  PubMed  CAS  Google Scholar 

  14. Assmann G, von Eckardstein A, Funke H. High density lipoproteins, reverse transport of cholesterol, and coronary artery disease. Insights from mutations. Circulation, Suppl. 1993; 87: 28–34.

    Google Scholar 

  15. Funke H, von Eckardstein A, Pritchard PH, et al. Genetic and phenotypic heterogeneity in familial lecithin: cholesterol acyltransferase (LCAT) deficiency. Six newly identified defective alleles further contribute to the structural heterogeneity in this disease. J Clin Invest. 1993; 91: 677–83.

    Article  PubMed  CAS  Google Scholar 

  16. Rômling R, von Eckardstein A, Funke H, et al. A nonsense mutation in the apolipoprotein A-I gene is associated with high density lipoprotein deficiency and periorbital xanthelasmas. Arterioscler Thromb. 1994; 14: 1915–22.

    Article  PubMed  Google Scholar 

  17. Dallongeville J, Lussier-Cacan S, Davignon J. Modulation of plasma triglyceride levels by apoE phenotype: a meta-analysis. J Lipid Res. 1992; 33: 447–54.

    PubMed  CAS  Google Scholar 

  18. Funke H, Wiebusch W, Fuer L, etal. Identification of mutations in the cholesterol ester transfer protein in Europeans with elevated high density lipoprotein cholesterol. Circulation. 1994; 90: 1–241.

    Google Scholar 

  19. Reymer PWA, Gagné E, Groenemeyer BE, etal. A lipoprotein lipase mutation (Asn291Ser) is associated with reduced HDL cholesterol levels in premature atherosclerosis. Nature Genet. 1995; 10 (In press).

    Google Scholar 

  20. Funke H, Assmann G. The lowdown on lipoprotein lipase. Nature Genet. 1995; 10 (In press).

    Google Scholar 

  21. Mailly F, Tugrul Y, Reymer PWA, et al. A common variant in the gene for lipoprotein lipase (Asp9-Asn): functional implications and prevalence in normal and hyperlipidemic subjects. Arterioscler Thromb Vascul Biol. 1995; 15: 468–78.

    Article  CAS  Google Scholar 

  22. Lackner C, Boerwinkle E, Leffert CC, Rahmig T, Hobbs HH. Molecular basis of apolipoprotein (a) isoform size heterogeneity as revealed by pulsed-field gel electrophoresis. J Clin Invest. 1991; 87: 2153–61.

    Article  PubMed  CAS  Google Scholar 

  23. Cohen JC, Chiesa G, Hobbs HH. Sequence polymorphism in the apolipoprotein(a) gene. Evidence for dissociation between apolipoprotein(a) size and plasma lipoprotein(a) levels. J Clin Invest. 1993; 91: 1630–6.

    Article  PubMed  CAS  Google Scholar 

  24. Sandholzer C, Saha N, Kark JD, et al. Apo(a) isoforms predict risk for coronary heart disease. A study in six populations. Arterioscler Thromb. 1992; 12: 1214–26.

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Kluwer Academic Publishers

About this chapter

Cite this chapter

Funke, H., Wiebusch, H., Rust, S., Assmann, G. (1995). Molecular genetics approach to lipoprotein metabolism disorders. In: Assmann, G. (eds) HDL Deficiency and Atherosclerosis. Developments in Cardiovascular Medicine, vol 174. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-6585-3_1

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-6585-3_1

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-011-6587-7

  • Online ISBN: 978-94-011-6585-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics