Skip to main content

Inorganic Membrane Reactors to Enhance the Productivity of Chemical Processes

  • Chapter
Inorganic Membranes Synthesis, Characteristics and Applications

Abstract

It was some fifteen to twenty years ago that the first papers appeared in the literature, pointing out that the application of membranes in reaction engineering would lead to the production of new chemical processes (Michaels 1968, Gryaznov 1970, Raymont 1975, Hwang and Kammermeyer 1975). The main idea was to prevent the reaction mixture from attaining the equilibrium composition by incorporating a membrane within the reactor, the membrane being used for the continuous and selective removal of products from the reaction zone. Inorganic membranes (ceramic or metallic, porous or dense), with their inherent thermal, structural and chemical stability, were in particular attractive for many high-temperature separations, for heterogeneous or homogeneous reactions or for reactions in aggressive and corrosive environments.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 16.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abe, F. 1987. Porous membranes for use in reaction processes. European Patent. Appl. 0,228,885A2.

    Google Scholar 

  • Armor, J. N. 1989. Catalysis with permselective inorganic membranes. Appl. Catal. 49: 1–25.

    Article  CAS  Google Scholar 

  • Anderson, M. A., M. J. Gieselmann and Q. Xu. 1988. Titania and alumina ceramic membranes. J. Membrane Science 39: 243–258.

    Article  CAS  Google Scholar 

  • Asaeda, M. and L. D. Du. 1986. Separation of alcohol/water gaseous mixtures by thin ceramic membrane. J. Chem. Eng. Japan 19(1): 72–77.

    Article  CAS  Google Scholar 

  • Bitter, J. G. A. 1986. Dehydrogenation using porous inorganic membranes. British Patent Appl. 8,629,135.

    Google Scholar 

  • Bhattakarya, S. K., N. K. Nag and N. D. Ganguly. 1971. Kinetics of vapor phase oxidation of methanol on reduced silver catalyst. J. Catal. 23: 158–167

    Article  Google Scholar 

  • Burggraaf, A. J. and K. Keizer. 1991. Synthesis of Inorganic Membranes. In Inorganic Membranes; Synthesis Characteristics and Applications, Eds R. Bhave, van Nostrand Reinhold, New York (Chapter 2).

    Google Scholar 

  • Caga, I. T., J. M. Winterbottom and I. R. Harris. 1987. Pd-based diffusion membranes as ethylene hydrogénation catalysts. Inorg. Chim. Acta 140: 53–55

    Article  CAS  Google Scholar 

  • Catalytica study. 1988. Catalytic membrane reactors: concepts and applications. 4187MR.

    Google Scholar 

  • Compagnie des Métaux Precieux. 1976. Hydrogen from water. French Patent Appl. 2,302,273A1.

    Google Scholar 

  • Cussler, E. D. 1988. Microporous membrane trickle bed reactor. European Patent Appl. 0,293,186A2.

    Google Scholar 

  • di Cosimo, R., J. D. Burrington and R. K. Grasselh. 1986. Oxidative dehydrogenation of propylene over Bi203-La203 oxide ion conductive catalysts. J. Catal. 102: 234–239.

    Article  Google Scholar 

  • Dellefield, R. J. 1988. High-temperature applications of inorganic membranes. Presented at the AIChE National Meeting, session 2f: separations by inorganic membranes 21–24 August, Denver, Colorado.

    Google Scholar 

  • Dougherty, R. C. and X. E. Verykios. 1987. Nonuniformly activated catalysts. Catal Rev. Sci. Eng. 29(1): 101–150.

    Article  Google Scholar 

  • Ermilova, M. M. 1981. Selective hydrogénation of nahpthalene on membrane catalysts. Met. i Kak Membran. Katal. M. 101–111.

    Google Scholar 

  • Ermilova, M. M., N. V. Orekhova, L. D. Gogua and L. S. Morosova. 1981. Selective hydrogénation of diene hydrocarbons on a palladium-ruthenium membrane catalyst. Met. i Kak Membran. Katal. M. 82–100.

    Google Scholar 

  • Fleming, H. L. 1987. Latest developments in inorganic membranes. Presented at BBC membrane planning conf. 20–22 October, Cambridge, MA.

    Google Scholar 

  • Furneaux, R. C., A. P. Davidson and M. D. Ball. 1987. Porous anodic aluminum oxide membrane catalyst support. European Patent Appl. 0,244,970A1.

    Google Scholar 

  • Furneaux, R. C. and M. C. Thornton. 1988. Porous “ceramic” membranes produced from anodizing aluminium. Brit. Cer. Proc., Advanced Ceramics in Chemical Process Engineering, Eds. B. C. H. Steele and D. P. Thompson, vol. 43, pp. 93–101.

    Google Scholar 

  • Gavalas, G. R., C. E. Megiris and S. W. Nam. 1989. Deposition of Hi-permselective Si02 films. Chem. Eng. Sci. 44(9): 1829–1835.

    Article  CAS  Google Scholar 

  • Gryaznov, V. M. 1970. Simultaneous contacting of catalytic processes which are associated with the generation and adsorption of hydrogen. German Patent Appl. 1,925,439.

    Google Scholar 

  • Gryaznov, V. M., V. S. Smirnov, L. K. Ivanova and A. P. Mishchenko. 1970. Couphng of reactions resulting from hydrogen transfer through the catalyst. Dokl. Akad. Nauk SSSR. 190(1): 144–147.

    CAS  Google Scholar 

  • Gryaznov, V. M., V. S. Smirnov and M. G. Slin’ko. 1976. Binary palladium alloys as selective membrane catalysts. Proc 6th Intl. Cong. Catal, Eds: G. C. Bond, P. B. Wells and F. C. Tompkins, vol. 2, pp. 894–902.

    Google Scholar 

  • Gryaznov, V. M. and V. S. Smirnov. 1977. Selective hydrogénation on membrane catalysts. Kinet. and Catal 18(3): 485–486.

    Google Scholar 

  • Gryaznov, V. M. and A. N. Karavanov. 1979. Hydrogénation and dehydrogenation of organic compounds on membrane catalysts (review). Khim.-Farm. Zh. 13(7): 74–78.

    CAS  Google Scholar 

  • Gryaznov, V. M., A. N. Karavanov, O. K. Krusil’nikova, G. L. Chernysova and A. V. Patrikeev. 1981a. Palladium on mesoporous glass as a catalyst for the hydrogénation of unsaturated compounds. Izv. Akad. Nauk. SSSR, Ser. Khim. 1: 1663–1666.

    Google Scholar 

  • Gryaznov, V. M., V. S. Smirnov and M. G. Slin’ko. 1981b. The development of catalysis by hydrogen porous membranes. Stud. Surf. Sci. Catal 7: 224–234.

    Article  CAS  Google Scholar 

  • Gryaznov, V. M., N. M. Ermilova, N. V. Orekhova and N. A. Makhota. 1983. Meter. Catal 5(1): 225.

    Google Scholar 

  • Gryaznov, V. M. 1986. Surface catalytic properties and hydrogen diffusion in palladium alloy membranes. Zeits. Für Phys. Chem. Neue Folge 147: 123–132.

    Article  CAS  Google Scholar 

  • Gryaznov, V. M., V. I. Vedernikov and S. G. Gul’yanova. 1986. Participation of oxygen, having diffused through a silver membrane catalyst, in heterogeneous oxidation processes. Kinet. and Catal 27(1): 129–133.

    Google Scholar 

  • Guizard C., F. Legault, N. Idrissi, A. Larbot, L. Cot and G. Gavach. 1989. Electronically conductive mineral membranes designed for electro-ultrafiltration. J. Membrane Science 41: 127–142.

    Article  CAS  Google Scholar 

  • Gul’yanova, S. G., V. M. Gryaznov and S. Kanizius. 1973. Selective hydrogénation of acetylene on a palladium-silver membrane catalyst. Analiz Soverm. Zadach u Tech. Naukakh 172.

    Google Scholar 

  • Gul’yanova, O. S., Y. M. Serov, S. G. Gul’yanova and V. M. Gryaznov. 1988. Conversion of carbon monoxide on membrane catalysts of palladium alloys; Reaction between CO and H2 on binary palladium alloys with ruthenium and nickel. Kinet. and Catal 29(4): 728–731.

    Google Scholar 

  • Haggin, J. 1988. New generation of membranes developed for industrial separations. Chem. Eng. News June 6: 7–16.

    Article  Google Scholar 

  • Hazbun, E. A. 1988. Ceramic membranes for hydrocarbon conversion. U.S. Patent 4,791,079.

    Google Scholar 

  • Hsieh, P. 1988. Inorganic membranes. A.I.Ch.E. Symp. Ser. 84(261): 1–18.

    CAS  Google Scholar 

  • Hsieh, P. 1989. Inorganic membrane reactors; a review. A.I.Ch.E. Symp. Ser. 85(268): 53–67.

    CAS  Google Scholar 

  • Hurly, P. 1987. New fibers clean up in new markets. High Technology 21–24.

    Google Scholar 

  • Ihas, S. and R. Govind. 1989. Development of high temperature membranes for membrane reactor: an overview. A.I.Ch.E. Symp. Ser. 85(268): 18–25.

    Google Scholar 

  • Itoh, N., Y. Shindo, T. Hakuta and H. Yoshitome. 1984. Enhanced catalytic decomposition of HI by using a microporous membrane. Int. J. Hydrogen Energy. 9(10): 835–839.

    Article  Google Scholar 

  • Itoh, N., Y. Shindo, K. Haraya, K. Obata, T. Hakuta and H. Yoshitome. 1985. Simulation of a reaction accompanied by separation. Int. Chem. Eng. 25(1): 138–142.

    Google Scholar 

  • Itoh, N. 1987. A membrane reactor using palladium. A.I.Ch.E. J. 33(9): 1576–1578.

    Article  CAS  Google Scholar 

  • Itoh, N., Y. Shindo, K. Haraya and T. Hakuta. 1988. A membrane reactor using microporous glass for shifting equilibrium of cyclohexane dehydrogenation. J. Chem. Eng. Japan 21(4): 399–404.

    Article  Google Scholar 

  • Itoh, N. and R. Govind. 1989. Development of a novel oxidative palladium membrane reactor. A.I.Ch.E. Symp. Ser. 85(268): 10–17.

    CAS  Google Scholar 

  • Kameyama, T., M. Dokiya, K. Fukuda and Y. Kotera. 1979. Differential permeation of hydrogen sulfide through a microporous vycor-type glass membrane in the separation system of hydrogen and hydrogen sulfide. Separ. Sci. Technol. 14(10): 953–957.

    Article  CAS  Google Scholar 

  • Kameyama, T., M. Dokiya, M. Fujishige, H. Yokohawa and K. Fukuda. 1981a. Possibility for effective production of hydrogen from hydrogen sulfide by means of a porous vycor glass membrane. Ind. Eng. Chem. Fundam. 20(1): 97–99.

    Article  CAS  Google Scholar 

  • Kameyama, T., K. Fukuda, M. Fujishige, H. Yokohawa and M. Dokiya. 1981b. Production of hydrogen from hydrogen sulfide by means of selective diffusion membranes. Adv. Hydrogen Energy Prog. 2: 569–579.

    CAS  Google Scholar 

  • Keizer, K. and A. J. Burggraaf 1988. Porous ceramic materials in membrane apphcations. Sci. Cer. 14: 83–93.

    CAS  Google Scholar 

  • Kikuchi, E., S. Uemiya, N. Sato, H. Inoue, H. Ando and T. Matsuda. 1989. Membrane reactor using microporous glass-supported thin film of palladium; Apphcation to the water gas shift. reaction. Chem. Lett. 3: 489–492.

    Article  Google Scholar 

  • Kokes, R. J. and J. R. J. Rennard. 1966. Hydrogénation of ethylene and propylene over palladium hydride. J. Phys. Chem. 70, 2543–2547.

    Article  Google Scholar 

  • Kolosov, E. N., N. I. Starkovskii, S. G. Gul’yanova and V. M. Gryaznov. 1988. Oxygen permeabihty of thin silver membranes; Effect of the adsorption of benzene on the oxygen transfer process. Russian J. Phys. Chem. 62(5): 661–663.

    Google Scholar 

  • Lakshminarayanaiah, N. 1969. Transport phenomena in membranes. Academic Press. Orlando, FL.

    Google Scholar 

  • Lebedeva, V. I. 1981. Hydrodemethylation of methyl and dimethylnapthalenes on membrane catalysts from binary palladium alloys. Met i Splavy Kak Membran. Katalyzatory M. 112- 116.

    Google Scholar 

  • Lee, E. K. 1987. Membranes: synthesis, apphcations. Encycl. of Phys. Sci. Technol. 8: 21–55.

    Google Scholar 

  • Leenaars, A. F. M., A. J. Burggraaf and K. Keizer. 1987. Process for the production of crack-free semi-permeable inorganic membranes. U.S. Patent 4,711,719.

    Google Scholar 

  • Lefferts, L., J. G. van Ommen and J. R. H. Ross. 1986. The oxidative dehydrogenation of methanol to formaldehyde over silver catalysts in relation to the oxygen-silver interaction. Appl. Catal 23: 385–402.

    Article  CAS  Google Scholar 

  • Lin, Y. S., K. J. de Vries and A. J. Burggraaf 1989. CVD modification of ceramic membranes: simulation and preliminary results. J. de Phys. Coll. de Phys., Proc. 7th Europ. Conf. on Chemical Vapor Deposition vol. C5, p. 861.

    Google Scholar 

  • Liu, Y., A. G. Dixon, Y. H. Ma and W. R. Moser. 1989. Permeation of ethylbenzene and hydrogen through untreated and catalytically-treated alumina membranes. Presented at the 198th ACS National Meeting division of Petrol. Chemical Symposium on New Catalytic Materials, 10–15 September, Miami, FL.

    Google Scholar 

  • Michaels, A. S. 1968. New separation technique for the CPI. Chem. Eng. Prog. 64: 31–43.

    CAS  Google Scholar 

  • Mikhalenko, N. N., E. Y. Khrapova and V. M. Gryaznov. 1986. Influence of hydrogen on the dehydrogenation of isopropyl alcohol in the presence of a palladium membrane catalyst. Kinet. and Catal. 27(1): 125–128.

    Google Scholar 

  • Mishchenko, A. P., M. E. Sarylova, V. M. Gryaznov, V. S. Smirnov, N. R. Roshan, V. P. Polyakova and E. M. Savitskii. 1977. Hydrogen permeabihty and catalytic activity of membranes made of palladium-copper alloys in relation to the dehydrogenation of 1,2- cyclohexanediol. Izv. Akad. Nauk SSSR, Ser. Khim. 7: 1620–1622.

    Google Scholar 

  • Mishchenko, A. P. and M. E. Sarylova. 1981. Hydrogen permeabihty and catalytic activity of a membrane catalyst from a palladium alloy containing 6% ruthenium in relation to hydrogénation of 1,3-pentadiene. Met. i Splavy Membrane Kak. Katalyz. M. 75–81.

    Google Scholar 

  • Mohan, K. and R. Govind. 1986. Analysis of a cocurrent membrane reactor. A.I.Ch.E. J. 32(12): 2083–2086.

    Article  CAS  Google Scholar 

  • Mohan, K. and R. Govind. 1988a. Analysis of equihbrium shift in isothermal reactors with a permselective wall. A.I.Ch.E. J. 34(9): 1493–1503.

    Article  CAS  Google Scholar 

  • Mohan, K. and R. Govind. 1988b. Studies on a membrane reactor. Separ. Sci. Technol. 23(13): 1715–1733.

    Article  CAS  Google Scholar 

  • Mohan, K. and R. Govind. 1988c. Efiect of temperature on equihbrium shift in reactors with a permeselective wall. Ind. Eng. Chem. Res. 27(11): 2064–2070.

    Article  CAS  Google Scholar 

  • Nagamoto, H. and H. Inoue. 1985. A reactor with catalytic membrane permeated by hydrogen. Chem. Eng. Commun. 34: 315–323.

    Article  CAS  Google Scholar 

  • Nagamoto, H. and H. Inoue. 1986. The hydrogénation of 1,3-butadiene over a palladium membrane. Bull. Chem. Soc. Japan 59: 3935–3939.

    Article  CAS  Google Scholar 

  • Nam, S. W. and G. R. Gavalas. 1989. Stabihty of H2-permselective SiO2 films formed by chemical vapor deposition. A.I.Ch.E. Symp. Ser. 85(268): 68–74.

    CAS  Google Scholar 

  • Nazarkina, E. B. and N. A. Kirichenko: 1979. Improvement in the steam catalytic conversion of methane by hydrogen hberation via palladium membranes Khim. Tekhnol. Topi. Masel. 3: 5–10.

    Google Scholar 

  • Omata, K., S. Hashimito, H. Tominaga and K. Fujimoto. 1989. Oxidative couphng of methane using a membrane reactor. Appl. Catal. 52(L1).

    Google Scholar 

  • Peng, N., F. Wang and D. Zhou. 1983. Preparation of a filter medium for removing ruthenium and evaluation of its performance. Fushe Fanghu (Radiation Protection), 3(2): 154–158.

    CAS  Google Scholar 

  • Pfefferie, W. C. 1966. U.S. Patent Appl. 3,290,406.

    Google Scholar 

  • van Praag, W. P., V. T. Zaspahs, K. Keizer, J. G. van Ommen, J. R. H. Ross and A. J. Burggraaf. 1989. Preparation, modification and microporous structure of alumina and titania ceramic membrane systems. Proc. 1st Europ. Ceram. Soc. Conf. Eds. G. de With, R. A. Terpstra and R. Metselaar, vol. 3 pp. 605–609.

    Google Scholar 

  • Present, R. D. and A. J. deBethune. 1949. Separation of a gas mixture through a long tube at low pressure Phys. Rev. 75(7): 1050–1061.

    Article  CAS  Google Scholar 

  • Raymont, M. E. D. 1975. Make hydrogen from hydrogen sulfide. Hydroc. Proc. 54(7): 139–142.

    CAS  Google Scholar 

  • Robb, D. A. and P. Harriott. 1974. The kinetics of methanol oxidation on a supported silver catalyst. J. Catal 35: 176–183.

    Article  CAS  Google Scholar 

  • Roos, J. A., S. J. Korf, J. J. P. Biermann, J. G. van Ommen and J. R. H. Ross. 1989. Oxidative couphng of methane, the effect of gas composition and process conditions. Proc. 2nd Europ. Workshop Meeting, New Developments in Selective Oxidation. Rimini, Italy.

    Google Scholar 

  • Shah, Y. T., T. Remmen and S. H. Chiang. 1970. A note on isothermal permeable wall plug flow reactor. Chem. Eng. Sci 25: 1947–1948.

    Article  CAS  Google Scholar 

  • Shinji, O., M. Misono and Y. Yoneda. 1982. The dehydrogenation of cyclohexane by the use of a porous-glass reactor. Bull Chem. Soc. Japan 55(9): 2760–2764.

    Article  CAS  Google Scholar 

  • Sloot, H. 1991. A non-permselective membrane reactor for catalytic gas phase reactions. Thesis, University of Twente, Enschede.

    Google Scholar 

  • Sokol’skii, D. v., B. Y. Nogerbekov and N. N. Gudeleva. 1986. Investigation of the activity of a palladium/glass membrane in catalytic hydrogenation reactions. Sov. Electrochem. 22(9): 1227–1229.

    Google Scholar 

  • Sun, Y. M. and Khang, S. J. 1988. Catalytic membrane for simultaneous chemical reaction and separation applied to a dehydrogenation reaction. Ind. Chem. Eng. Res. 27(7): 1136–1142.

    Article  CAS  Google Scholar 

  • Suzuki, H. 1987. Composite membrane having a surface layer of an ultrathin film of cage-shaped zeohte and processes for production thereof U.S. Patent 4,699,892.

    Google Scholar 

  • Suzuki, F., K. Onozato and Y. Kurokawa. 1987. Gas permeabihty of a porous alumina membrane prepared by the sol-gel process (aluminium iso-propoxide). J. Non-Crystl. Solids 94: 160–162.

    Article  CAS  Google Scholar 

  • Uemiya, S., Y. Kude, K. Sugino, T. Matsuda and E. Kikuchi. 1988. A palladium/porous-glass composite membrane for hydrogen separation. Chem. Lett. 10: 1679–1690.

    Google Scholar 

  • Uhlhorn, R. J. R., M. H. B. J. Huis in’t Veld, K. Keizer and A. J. Burggraaf 1989a. Theory and experiments on transport of condensable gases in microporous ceramic membrane systems. Proc. 1st Intl. Cong. Inorganic Membrane, 3–6 July, 323–328, Montpellier.

    Google Scholar 

  • Uhlhorn, R. J. R., M. H. B. J. Huis in’t Veld, K. Keizer and A. J. Burggraaf 1989b. High permselectivities of microporous silica-modified y-alumina membranes. J. Mat. Sci. Lett. 8: 1135–1138.

    Article  CAS  Google Scholar 

  • Uhlhorn, R. J. R., Ceramic membranes for gas separation; synthesis and transport properties, Thesis, University of Twente, Enschede.

    Google Scholar 

  • Vayenas, C. G. and S. Pavlou. 1987a. Optimal catalyst distribution and generalized effectiveness factors in pellets: single reactions with arbitrary kinetics. Chem. Eng. Sci. 42(11): 2633–2645.

    Article  CAS  Google Scholar 

  • Vayenas, C. G. and S. Pavlou. 1987b. Optimal catalyst distribution for selectivity maximization in pellets: parallel and consecutive reactions. Chem. Eng. Sci. 42(7): 1655–1666.

    Article  CAS  Google Scholar 

  • van Vuren, R. J., B. C. Bonekamp, K. Keizer, R. J. R. Uhlhorn, H. J. Veringa and A. J. Burggraaf 1987. Formation of ceramic alumina membrane for gas separation. High Tech Ceramics, ed. P. Vincenzini, p. 2235–2245.

    Google Scholar 

  • Wood, B. J. 1968. Dehydrogenation of cyclohexane on a hydrogen-porous membrane. J. Catal. 11: 30–34.

    Article  CAS  Google Scholar 

  • Wu, J. C. S., T. E. Gerdes, J. L. Pszczolkowski, R. R. Bhave and P. K. T. Liu, 1990. Dehydrogenation of ethylbenzene to styrene using commercial ceramic membranes as reactors. Separ. Sci. Technol. 1990. 25(13–15): 1489–1510.

    Article  CAS  Google Scholar 

  • Yamada, M., K. Fugii, H. Haru and K. Itabashi. 1988. Preparation and catalytic properties of special alumina membrane formed by anodic oxidation of aluminum. Proc. 9th Intl. Cong. Catal. 1945–1951.

    Google Scholar 

  • Yeheskel, J., D. Léger and P. Courvoisier. 1979. Thermal decomposition of hydroiodic acid and hydrogen separation. Adv. Hydrogen Energy. 2(1): 569–594.

    Google Scholar 

  • Zaspalis, V. T., W. van Praag, K. Keizer, J. R. H. Ross and A. J. Burggraaf, 1990. Modified alumina membranes as active materials in catalytic processes. Proc. 1st Intl. Cong. Inorganic Membrane, 3–6 July, 367–372, Montpellier.

    Google Scholar 

  • Zaspalis, V. T., K. van Praag, J. G. van Ommen, J. R. H. Ross and A. J. Burggraaf 1991. The reactions of methanol over alumina catalytically active membranes. Accepted for publication. Appl. Catalysis.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1991 Van Nostrand Reinhold

About this chapter

Cite this chapter

Zaspalis, V.T., Burggraaf, A.J. (1991). Inorganic Membrane Reactors to Enhance the Productivity of Chemical Processes. In: Inorganic Membranes Synthesis, Characteristics and Applications. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-6547-1_7

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-6547-1_7

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-011-6549-5

  • Online ISBN: 978-94-011-6547-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics